forked from bodhwani/Emotional-AI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
executable file
·92 lines (84 loc) · 3.11 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
from flask import Flask
from flask import request, render_template
from flask_cors import CORS, cross_origin
import base64
import cv2
import numpy as np
from statistics import mode
from keras.models import load_model
from utils.datasets import get_labels
from utils.inference import detect_faces
from utils.inference import draw_text
from utils.inference import draw_bounding_box
from utils.inference import apply_offsets
from utils.inference import load_detection_model
from utils.preprocessor import preprocess_input
import librosa
import librosa.display
import numpy as np
import tensorflow as tf
from matplotlib.pyplot import specgram
import keras
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from keras.utils import to_categorical
from keras.models import Model
from keras.callbacks import ModelCheckpoint
from sklearn.metrics import confusion_matrix
import pyaudio
import wave
from keras.models import model_from_json
tf.keras.backend.clear_session()
print("IMPORTED")
emotion_model_path = './models/fer2013_mini_XCEPTION.102-0.66.hdf5'
emotion_labels = get_labels('fer2013')
frame_window = 10
emotion_offsets = (20, 40)
face_cascade = cv2.CascadeClassifier('./models/haarcascade_frontalface_default.xml')
emotion_classifier = load_model(emotion_model_path)
emotion_target_size = emotion_classifier.input_shape[1:3]
emotion_window = []
print("Loaded model from disk")
global graph
graph = tf.get_default_graph()
def data_uri_to_cv2_img(uri):
encoded_data = uri.split(',')[1]
nparr = np.fromstring(base64.b64decode(encoded_data), np.uint8)
img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
return img
def emotion_face(bgr_image_base64):
bgr_image = data_uri_to_cv2_img(bgr_image_base64)
gray_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2GRAY)
rgb_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2RGB)
faces = face_cascade.detectMultiScale(gray_image, scaleFactor=1.1, minNeighbors=5,
minSize=(30, 30), flags=cv2.CASCADE_SCALE_IMAGE)
for face_coordinates in faces:
x1, x2, y1, y2 = apply_offsets(face_coordinates, emotion_offsets)
gray_face = gray_image[y1:y2, x1:x2]
try:
gray_face = cv2.resize(gray_face, (emotion_target_size))
except:
continue
gray_face = preprocess_input(gray_face, True)
gray_face = np.expand_dims(gray_face, 0)
gray_face = np.expand_dims(gray_face, -1)
with graph.as_default():
emotion_prediction = emotion_classifier.predict(gray_face)
emotion_probability = np.max(emotion_prediction)
emotion_label_arg = np.argmax(emotion_prediction)
emotion_text = emotion_labels[emotion_label_arg]
print("emotion_text", emotion_text)
return emotion_text
app = Flask(__name__)
cors = CORS(app)
app.config['CORS_HEADERS'] = 'Content-Type'
@app.route('/')
def hello():
return "HELLO"
@app.route('/face', methods=['POST'])
def face():
res = emotion_face(request.form["data"])
print(res)
return res
if __name__ == '__main__':
app.run(debug=True)