forked from jpjones76/STA-LTA-OS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsop.m
272 lines (242 loc) · 7.21 KB
/
sop.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
function R = sop(p, f, varargin)
% R = sop(P, F, OPTS);
%
% Compute the short-term-averaged outlier probability given outlier
% probability time series P and outlier fraction F. If P is a matrix and F
% is an array, it's required that numel(F) = size(P,2).
%
% INPUTS
% P outlier probability time series, arranged as column vectors
% F outlier fraction for each column of P
%
% OUTPUT STRUCTURE R
% FIELD MEANING
% rb Detection statistic
% rs Smoothed rho_t from onset picking
% t Central sample # of each rho_t calculation
% s Event start times, samples
% e Event end times, samples
% p Event P picks, samples
%
% OPTS DEFAULT MEANING
% Sw 100 Short window, samples
% Th 1.5 Event windows correspond to STA - Th*LTA > 0
% pTh 2.0 Only autopick if STA - pTh*LTA > 0
% eos 2000 Event start times must be > eos apart
% op 0 Do onset picking (1 = 'yes')
% pad 0 Pad event start with esp, end with eep? 1 = 'yes'
% esp 2000 Event start pad, in samples
% eep 4000 Event end pad, in samples
% qth 0.1 Only retain picks with q > qth
% tmax 0.95 Events with thr > tmax are set to tmax
% v 0 Verbosity
%
% ========================================================================
% Author: Joshua Jones, [email protected]
% Version: 1.0, 2016-02-29
%% Default options
opts.Sw = 200;
opts.Th = 1.3;
opts.pTh = 2.0;
opts.eep = 2000; % Event end (post) pad, in samples
opts.eos = 1000; % Event start times must be > eos apart
opts.esp = 2000; % Event start (pre) pad, in samples
opts.op = 0; % Onset picking, 1 = 'yes'
opts.pad = 0; % Pad start with esp, end with eep? 1 = 'yes'
opts.qth = 0.1; % Only try to pick events with q > qth
opts.tmax = 0.95; % thr > opts.tmax are set to opts.tmax
opts.v = 0; % Verbosity
% Dependent defaults
opts.dt = opts.Sw/2; % Time between STA calculations
opts.dpmax = opts.Sw; % P picks with errors over dpmax aren't saved
%% Parse varargin
if numel(varargin) > 0
j = 1;
while j <= numel(varargin)
if isstruct(varargin{j})
inputs = fieldnames(varargin{j});
for k = 1:numel(inputs)
eval(['opts.' inputs{k} '= varargin{j}.' ...
inputs{k} ';']);
end
j = j+1;
else
eval(['opts.' varargin{j} '= varargin{j+1};']);
j = j+2;
end
end
end
opts = orderfields(opts);
%% Main
% Create vector t of times at which we compute sop
[Np,Nc] = size(p);
t = 0:opts.dt:Np-opts.Sw;
K = numel(t);
sw2 = ceil(opts.Sw/2);
% Set event detection options if we are doing event detection
s1 = [];
e1 = [];
eq = [];
evip = 0;
m = 0;
eos = opts.eos;
% Ensure thresholds are correctly specified for each channel
if numel(opts.Th) < Nc
thr = opts.Th;
thr(end+1:Nc) = repmat(thr(end),[1 Nc-numel(opts.Th)]);
if opts.op
pthr = opts.pTh;
pthr(end+1:Nc) = repmat(thr(end),[1 Nc-numel(opts.pTh)]);
end
else
thr = opts.Th;
if opts.op
pthr = opts.pTh;
end
end
% thr<1 is an exact probability p0; thr >= 1 is a scalar multiplier of f
if min(thr) >= 1
thr = thr.*f;
if opts.op
pthr = pthr.*f;
end
end
% Ensure thr are sane
thr(thr>opts.tmax) = opts.tmax;
if opts.op
pthr(pthr>opts.tmax) = opts.tmax;
end
%% Compute detection statistic r
for k = 1:1:K
rt = p(t(k)+1:t(k)+opts.Sw,:);
r(k,:) = mean(rt)-thr;
end
%% Event detection
rs = zeros(size(p));
rb = zeros(Np,1);
% Initiatlize picking variables if doing onset picks
if opts.op
op = zeros(1,Nc);
pq = zeros(1,Nc);
dp = zeros(1,Nc);
end
% Event detection at each time in array t
for k = 1:1:K
% Fill rs
rs(t(k)+1:t(k)+opts.Sw,:) = repmat(r(k,:),[opts.Sw 1]);
% Event tracker
etr = mean(r(k,:));
% Stored for plotting purposes
rb(t(k)+1:t(k)+opts.Sw,1) = etr;
if etr > 0 & ~evip
evip = 1;
if ~m | t(k)-s1(m) >= eos
m = m+1;
s1(m,1) = t(k);
k0 = k;
end
elseif (etr <= 0 | k == K) & evip
evip = 0;
% Compute event quality
eq(m,:) = max(max(r(k0:k,:))./(1-thr),0);
% Onset picking if selected & feasible. The condition numel(e1) <
% m prevents repicking when end times are extended.
if opts.op & numel(e1) < m
op(m,:) = zeros(1,Nc);
pq(m,:) = zeros(1,Nc);
dp(m,:) = zeros(1,Nc);
% ensure we aren't picking in coda of previous event
if m > 1
tt = e1(m-1)+opts.eep;
else
tt = 0;
end
if s1(m,1)-sw2 > tt & t(k)+sw2 < Np
ps = s1(m,1)-sw2;
pe = t(k)+sw2;
p0 = p(ps:pe,:);
[op(m,:),pq(m,:),dp(m,:),rs(ps+sw2:pe-sw2,:)] = ...
autopick(p0,pthr,ps,opts);
end
end
e1(m,1) = t(k);
end
end
% Check for event start at last time
if numel(s1) > numel(e1)
eq(m,:) = max(r(k0:k,:))./(1-thr);
if opts.op & numel(e1) < m
if m > 1
%tt = e1(m-1)+opts.eos*opts.eep;
tt = e1(m-1)+opts.eep;
else
tt = 0;
end
if s1(m,1)-sw2 > tt & t(k)+sw2 < Np
ps = s1(m,1)-sw2;
pe = t(k)+sw2;
[op(m,:),pq(m,:),dp(m,:),rs(ps+sw2:pe-sw2,:)] = ...
autopick(p(ps:pe,:),thr,ps,opts);
end
end
e1(m,1) = s1(m,1)+opts.Sw;
end
% Adjust event start, times
if opts.pad
s1 = s1 - opts.esp; % Event start pad
e1 = e1 + opts.eep; % Event end pad
end
s1 = s1 + round(opts.Sw/2) + 1;
e1 = e1 + round(opts.Sw/2) + 1;
% Fill rest of rs, rb
rs(t(K)+opts.Sw+1:Np,:) = repmat(min(r),[Np-t(K)-opts.Sw,1]);
rb(t(K)+opts.Sw+1:Np,1) = repmat(min(rb),[Np-t(K)-opts.Sw,1]);
%% Fill results structure
R = opts;
R.t = t + sw2;
R.r = r;
R.s = s1;
R.e = e1;
R.eq = eq;
R.evip = evip;
R.rs = rs;
R.rb = rb;
% Control for poor quality picks
if opts.op & numel(s1)
Nev = numel(R.s);
op(dp > opts.dpmax) = 0;
pq(dp > opts.dpmax) = 0;
dp(dp > opts.dpmax) = 0;
[Np,Ncp] = size(op);
R.p = op;
R.pq = pq;
R.dp = dp;
if Np < Nev | Ncp < Nc
R.p(Np+1:Nev,Ncp+1:Nc) = 0;
R.pq(Np+1:Nev,Ncp+1:Nc) = 0;
R.dp(Np+1:Nev,Ncp+1:Nc) = 0;
end
end
% ========================================================================
function [op,pq,dp,xs] = autopick(p0,thr,ps,opts)
[np,nc] = size(p0);
op = zeros(1,nc);
pq = zeros(1,nc);
dp = zeros(1,nc);
sw2 = round(opts.Sw/2);
for k1 = 1:1:np-opts.Sw
pt(k1,:) = mean(p0(k1+1:k1+opts.Sw,:)) - thr;
end
[tp,oq,xs] = es94ap(pt); % Autopick
oq = oq./(1-thr); % Max possible value of 1
for c = 1:nc
if tp(c) > 0 & oq(c) >= opts.qth
op(c) = 1 + ps + tp(c) + sw2; % Time correction
pq(c) = oq(c); % Pick quality
dp(c) = max(7,exp(1/pq(c))); % Pick error
else
op(c) = 0;
pq(c) = 0;
dp(c) = 0;
end
end