-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmnist.py
69 lines (54 loc) · 1.36 KB
/
mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# -*- coding: utf-8 -*-
"""
Created on Wed Jul 17 19:17:43 2019
@author: msouf
"""
import matplotlib.pyplot as plt
import numpy as np
import keras as k
import tensorflow as tf
from keras import Sequential
data=k.datasets.mnist
(x_train, y_train), (x_test, y_test)=data.load_data()
plt.figure()
plt.imshow(x_train[0])
plt.xlabel(y_train[0])
plt.colorbar()
plt.grid(False)
plt.show
classes=['0','1','2','3','4','5','6','7','8','9']
plt.figure(figsize=(10,10))
for i in range(25):
plt.subplot(5,5,i+1)
plt.xticks([])
plt.yticks([])
plt.imshow(x_train[i],cmap='binary')
plt.xlabel(classes[y_train[i]])
plt.show()
model=Sequential()
model.add(k.layers.Flatten(input_shape=(28,28)))
model.add(k.layers.Dense(units=128,activation='relu'))
model.add(k.layers.Dense(units=10,activation='softmax'))
model.compile(optimizer='adam',metrics=['accuracy'],loss='sparse_categorical_crossentropy')
hist=model.fit(x_train,y_train,epochs=50)
test_loss,test_acc=model.evaluate(x_test,y_test)
print('Test Accuracy',test_acc)
#%%
predictions=model.predict(x_test)
#%%
plt.figure(figsize=(10,10))
for i in range(20):
plt.subplot(1,10,i+1)
plt.xticks([])
plt.yticks([])
plt.imshow(x_test[i],cmap='binary')
plt.xlabel(np.argmax(predictions[i]))
plt.show()
#%%
dict=hist.history
acc=dict['acc']
loss=dict['loss']
epochs=len(acc)
#%%
plt.figure()
plt.plot()