-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhome.py
62 lines (37 loc) · 1.58 KB
/
home.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from keras.models import model_from_json
from flask import Flask, render_template, request
import numpy as np
import os
from werkzeug.utils import secure_filename
from tensorflow.keras.preprocessing import image
app = Flask(__name__)
app.config['UPLOAD_FOLDER'] = 'static/images'
@app.route('/')
def index_view():
return render_template('index.html')
@app.route('/uploader', methods=['GET', 'POST'])
def upload_file():
if request.method == 'POST':
f = request.files['file']
f.save(os.path.join(app.config['UPLOAD_FOLDER'], secure_filename(f.filename)))
file_path = os.path.join(app.config['UPLOAD_FOLDER'], f.filename)
img = image.load_img(file_path, target_size=(100, 100))
img_array = image.img_to_array(img)
img_batch = np.expand_dims(img_array, axis=0)
json_file = open('model/model.json','r')
loaded_model_json = json_file.read()
json_file.close()
loaded_model = model_from_json(loaded_model_json)
loaded_model.load_weights("model/model.h5")
print("Loaded Model from disk")
predict = loaded_model.predict(img_batch)
if predict[0][0]>predict[0][1]:
result = "NORMAL"
accuracy = predict[0][0]
else:
result = "PNEUMONIA"
accuracy = predict[0][1]
return render_template('predict.html', result=result,file_path=file_path,accuracy = accuracy)
if __name__ == '__main__':
port = int(os.environ.get('PORT', 5000))
app.run(host='0.0.0.0', port=port)