-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathOptimization.py
273 lines (241 loc) · 9.61 KB
/
Optimization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import argparse
import os
import sys
import shutil
import models
import dataset
import numpy as np
import tensorflow as tf
import scipy.misc
def load_model(name, input_node):
""" Creates and returns an instance of the model given its class name.
The created model has a single placeholder node for feeding images.
"""
# Find the model class from its name
all_models = models.get_models()
net_class = [model for model in all_models if model.__name__ == name][0]
# Construct and return the model
return net_class({'data': input_node})
def calc_gradients(
sesh,
model_name,
image_producer,
output_file_dir,
max_iter,
save_freq,
learning_rate=1.0,
targets=None,
weight_loss2=1,
data_spec=None,
batch_size=1,
noise_file=None):
"""Compute the gradients for the given network and images."""
spec = models.get_data_spec(model_name)
modifier = tf.Variable(
np.zeros(
(batch_size,
spec.crop_size,
spec.crop_size,
spec.channels),
dtype=np.float32))
input_image = tf.placeholder(
tf.float32, (None, spec.crop_size, spec.crop_size, spec.channels))
input_label = tf.placeholder(tf.int32, (None))
true_image = tf.minimum(tf.maximum(modifier +
input_image, -
spec.mean +
spec.rescale[0]), -
spec.mean +
spec.rescale[1])
diff = true_image - input_image
loss2 = tf.sqrt(tf.reduce_mean(tf.square(true_image - input_image)))
probs, variable_set = models.get_model(sesh, true_image, model_name)
weight_loss1 = 1
true_label_prob = tf.reduce_mean(
tf.reduce_sum(
probs *
tf.one_hot(
input_label,
1000),
[1]))
if targets is None:
loss1 = -tf.log(1 - true_label_prob + 1e-6)
else:
loss1 = -tf.log(true_label_prob + 1e-6)
loss = weight_loss1 * loss1 # + weight_loss2 * loss2
optimizer = tf.train.AdamOptimizer(learning_rate)
train = optimizer.minimize(loss, var_list=[modifier])
noise = None
# Load noise file
if noise_file is not None:
noise = np.load(noise_file) / 255.0 * \
(spec.rescale[1] - spec.rescale[0])
# The number of images processed
# The total number of images
total = len(image_producer)
save_times = (max_iter - 1) / save_freq + 1
gradient_record = np.zeros(
shape=(
save_times,
total,
spec.crop_size,
spec.crop_size,
spec.channels),
dtype=float)
rec_iters = []
rec_names = []
rec_dist = []
# initiallize all uninitialized varibales
init_varibale_list = set(tf.all_variables()) - variable_set
sesh.run(tf.initialize_variables(init_varibale_list))
tot_image = 0
image_producer.startover()
# Interactive with mini-batches
for (indices, labels, names, images) in image_producer.batches(sesh):
sesh.run(tf.initialize_variables(init_varibale_list))
if targets is not None:
labels = [targets[e] for e in names]
if noise is not None:
for i in range(len(indices)):
images[i] += noise[indices[i]]
feed_dict = {input_image: images, input_label: labels}
var_loss, true_prob, var_loss1, var_loss2 = sesh.run(
(loss, true_label_prob, loss1, loss2), feed_dict=feed_dict)
tot_image += 1
print 'Start!'
min_loss = var_loss
last_min = -1
# record numer of iteration
tot_iter = 0
for cur_iter in range(max_iter):
tot_iter += 1
sesh.run(train, feed_dict=feed_dict)
var_loss, true_prob, var_loss1, var_loss2 = sesh.run(
(loss, true_label_prob, loss1, loss2), feed_dict=feed_dict)
break_condition = False
if var_loss < min_loss * 0.99:
min_loss = var_loss
last_min = cur_iter
if (cur_iter + 1) % save_freq == 0:
noise_diff = sesh.run(modifier)
for i in range(len(indices)):
gradient_record[(cur_iter + 1) / save_freq - 1][indices[i]] = noise_diff[i]
if cur_iter + 1 == max_iter or break_condition:
var_diff, var_probs = sesh.run(
(modifier, probs), feed_dict=feed_dict)
var_diff = np.sqrt(np.mean(np.square(
var_diff), (1, 2, 3))) / (spec.rescale[1] - spec.rescale[0]) * 255.0
correct_top_1 = 0
for i in range(len(indices)):
top1 = var_probs[i].argmax()
if labels[i] == top1:
correct_top_1 += 1
rec_iters.append(tot_iter)
rec_names.append(names[i])
rec_dist.append(var_diff[i])
break
return gradient_record
def save_file(sesh, image_producer, noise, data_spec, args):
save_times = (args.num_iter - 1) / args.save_freq + 1
for i in range(save_times):
tmp_dir = os.path.join(args.output_dir, str(i))
if os.path.exists(tmp_dir):
shutil.rmtree(tmp_dir)
os.mkdir(tmp_dir)
total = len(image_producer)
diff = np.zeros(
shape=(
total,
data_spec.crop_size,
data_spec.crop_size,
data_spec.channels))
image_producer.startover()
for (indices, label, names, images) in image_producer.batches(sesh):
for index in range(len(indices)):
attack_img = np.clip(
images[index] + noise[i][indices[index]] + data_spec.mean,
data_spec.rescale[0],
data_spec.rescale[1])
diff[indices[index]] = attack_img - data_spec.mean - images[index]
if data_spec.expects_bgr:
for i in range(data_spec.crop_size):
for j in range(data_spec.crop_size):
b, g, r = attack_img[i][j]
attack_img[i][j] = [r, g, b]
im = scipy.misc.toimage(
arr=attack_img,
cmin=data_spec.rescale[0],
cmax=data_spec.rescale[1])
new_name, ext = os.path.splitext(names[index])
new_name += '.png'
im.save(os.path.join(tmp_dir, new_name))
print 'Saved', os.path.join(tmp_dir, new_name)
return
def main():
# Parse arguments
parser = argparse.ArgumentParser(
description='Use Adam optimizer to generate adversarial examples.')
parser.add_argument('-i', '--input_dir', type=str, required=True,
help='Directory of dataset.')
parser.add_argument('-o', '--output_dir', type=str, required=True,
help='Directory of output image file.')
parser.add_argument('--model', type=str, required=True,
choices=['GoogleNet'],
help='Models to be evaluated.')
parser.add_argument('--num_images', type=int, default=sys.maxsize,
help='Max number of images to be evaluated.')
parser.add_argument('--file_list', type=str, default=None,
help='Evaluate a specific list of file in dataset.')
parser.add_argument('--noise_file', type=str, default=None,
help='Directory of the noise file.')
parser.add_argument('--num_iter', type=int, default=1000,
help='Number of iterations to generate attack.')
parser.add_argument('--save_freq', type=int, default=10,
help='Save .npy file when each save_freq iterations.')
parser.add_argument('--learning_rate', type=float, default=0.001 * 255,
help='Learning rate of each iteration.')
parser.add_argument('--target', type=str, default=None,
help='Target list of dataset.')
parser.add_argument('--weight_loss2', type=float, default=0.0,
help='Weight of distance penalty.')
parser.add_argument('--not_crop', dest='use_crop', action='store_false',
help='Not use crop in image producer.')
parser.set_defaults(use_crop=True)
args = parser.parse_args()
assert args.num_iter % args.save_freq == 0
data_spec = models.get_data_spec(model_name=args.model)
args.learning_rate = args.learning_rate / 255.0 * \
(data_spec.rescale[1] - data_spec.rescale[0])
image_producer = dataset.ImageNetProducer(file_list=args.file_list,
data_path=args.input_dir,
num_images=args.num_images,
data_spec=data_spec,
need_rescale=args.use_crop,
batch_size=1)
targets = None
if args.target is not None:
targets = {}
with open(args.target, 'r') as f:
for line in f:
key, value = line.strip().split()
targets[key] = int(value)
sesh = tf.Session()
gradients = calc_gradients(
sesh,
args.model,
image_producer,
args.output_dir,
args.num_iter,
args.save_freq,
args.learning_rate,
targets,
args.weight_loss2,
data_spec,
1,
args.noise_file)
save_file(sesh, image_producer,
gradients,
data_spec,
args)
if __name__ == '__main__':
main()