-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patha3c.py
325 lines (261 loc) · 12.4 KB
/
a3c.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
from __future__ import print_function
from collections import namedtuple
import six.moves.queue as queue
import threading
import numpy as np
import tensorflow as tf
from model import LSTMPolicy
import scipy.signal
def discount(x, gamma):
return scipy.signal.lfilter([1], [1, -gamma], x[::-1], axis=0)[::-1]
def process_rollout(rollout, gamma, lambda_=1.0):
"""
Given a rollout, compute its returns and the advantage.
"""
batch_si = np.asarray(rollout.states)
batch_a = np.asarray(rollout.actions)
rewards = np.asarray(rollout.rewards)
vpred_t = np.asarray(rollout.values + [rollout.r])
rewards_plus_v = np.asarray(rollout.rewards + [rollout.r])
batch_r = discount(rewards_plus_v, gamma)[:-1]
delta_t = rewards + gamma * vpred_t[1:] - vpred_t[:-1]
# this formula for the advantage comes "Generalized Advantage Estimation":
# https://arxiv.org/abs/1506.02438
batch_adv = discount(delta_t, gamma * lambda_)
features = rollout.features[0]
return Batch(batch_si, batch_a, batch_adv, batch_r, rollout.terminal, features)
Batch = namedtuple("Batch", ["si", "a", "adv", "r", "terminal", "features"])
class PartialRollout(object):
"""
A piece of a complete rollout. We run our agent, and process its experience
once it has processed enough steps.
"""
def __init__(self):
self.states = []
self.actions = []
self.rewards = []
self.values = []
self.r = 0.0
self.terminal = False
self.features = []
def add(self, state, action, reward, value, terminal, features):
self.states += [state]
self.actions += [action]
self.rewards += [reward]
self.values += [value]
self.terminal = terminal
self.features += [features]
def extend(self, other):
assert not self.terminal
self.states.extend(other.states)
self.actions.extend(other.actions)
self.rewards.extend(other.rewards)
self.values.extend(other.values)
self.r = other.r
self.terminal = other.terminal
self.features.extend(other.features)
class RunnerThread(threading.Thread):
"""
One of the key distinctions between a normal environment and a universe environment
is that a universe environment is _real time_. This means that there should be a thread
that would constantly interact with the environment and tell it what to do. This thread is here.
"""
def __init__(self, env, policy, num_local_steps):
threading.Thread.__init__(self)
self.queue = queue.Queue(5)
self.num_local_steps = num_local_steps
self.env = env
self.last_features = None
self.policy = policy
self.daemon = True
self.sess = None
self.summary_writer = None
def start_runner(self, sess, summary_writer):
self.sess = sess
self.summary_writer = summary_writer
self.start()
def run(self):
with self.sess.as_default():
self._run()
def _run(self):
rollout_provider = env_runner(self.env, self.policy, self.num_local_steps, self.summary_writer)
while True:
# the timeout variable exists because apparently, if one worker dies, the other workers
# won't die with it, unless the timeout is set to some large number. This is an empirical
# observation.
self.queue.put(next(rollout_provider), timeout=3600.0)
def env_runner(env, policy, num_local_steps, summary_writer):
"""
The logic of the thread runner. In brief, it constantly keeps on running
the policy, and as long as the rollout exceeds a certain length, the thread
runner appends the policy to the queue.
"""
last_state = env.reset()
last_features = policy.get_initial_features()
length = 0
rewards = 0
episode_vf = []
episode_logits = []
episode_rewards = []
episode_emit = True
while True:
terminal_end = False
rollout = PartialRollout()
for _ in range(num_local_steps):
fetched = policy.act(last_state, *last_features)
action, value_, logits, features = fetched[0], fetched[1], fetched[2], fetched[3:]
episode_vf.append(value_)
episode_logits.append(logits)
# argmax to convert from one-hot
state, reward, terminal, info = env.step(action.argmax())
# collect the experience
rollout.add(last_state, action, reward, value_, terminal, last_features)
length += 1
rewards += reward
episode_rewards.append(rewards)
last_state = state
last_features = features
if info:
summary = tf.Summary()
for k, v in info.items():
summary.value.add(tag=k, simple_value=float(v))
summary_writer.add_summary(summary, policy.global_step.eval())
summary_writer.flush()
timestep_limit = env.spec.tags.get('wrapper_config.TimeLimit.max_episode_steps')
if terminal or length >= timestep_limit:
terminal_end = True
if length >= timestep_limit or not env.metadata.get('semantics.autoreset'):
last_state = env.reset()
last_features = policy.get_initial_features()
print("Episode finished. Sum of rewards: %d. Length: %d" % (rewards, length))
length = 0
rewards = 0
# Record episode summary.
if episode_emit:
for index, (vf, logits, ep_reward) in enumerate(zip(episode_vf, episode_logits, episode_rewards)):
summary = tf.Summary()
summary.value.add(tag='episode/reward', simple_value=float(ep_reward))
summary.value.add(tag='episode/vf', simple_value=float(vf))
for action in range(logits.shape[1]):
summary.value.add(
tag='episode/logits/{}'.format(action),
simple_value=float(logits[0, action])
)
summary_writer.add_summary(summary, index)
summary_writer.flush()
episode_vf = []
episode_logits = []
episode_rewards = []
episode_emit = False
break
if not terminal_end:
rollout.r = policy.value(last_state, *last_features)
# once we have enough experience, yield it, and have the ThreadRunner place it on a queue
yield rollout
class A3C(object):
def __init__(self, env, task, freeze=False):
"""
An implementation of the A3C algorithm that is reasonably well-tuned for the VNC environments.
Below, we will have a modest amount of complexity due to the way TensorFlow handles data parallelism.
But overall, we'll define the model, specify its inputs, and describe how the policy gradients step
should be computed.
"""
self.env = env
self.task = task
self.freeze = freeze
worker_device = "/job:worker/task:{}/cpu:0".format(task)
with tf.device(tf.train.replica_device_setter(1, worker_device=worker_device)):
with tf.variable_scope("global"):
self.network = LSTMPolicy(env.observation_space.shape, env.action_space.n)
self.global_step = tf.get_variable("global_step", [], tf.int32,
initializer=tf.constant_initializer(0, dtype=tf.int32),
trainable=False)
with tf.device(worker_device):
with tf.variable_scope("local"):
self.local_network = pi = LSTMPolicy(env.observation_space.shape, env.action_space.n)
pi.global_step = self.global_step
self.ac = tf.placeholder(tf.float32, [None, env.action_space.n], name="ac")
self.adv = tf.placeholder(tf.float32, [None], name="adv")
self.r = tf.placeholder(tf.float32, [None], name="r")
log_prob_tf = tf.nn.log_softmax(pi.logits)
prob_tf = tf.nn.softmax(pi.logits)
# the "policy gradients" loss: its derivative is precisely the policy gradient
# notice that self.ac is a placeholder that is provided externally.
# adv will contain the advantages, as calculated in process_rollout
pi_loss = - tf.reduce_sum(tf.reduce_sum(log_prob_tf * self.ac, [1]) * self.adv)
# loss of value function
vf_loss = 0.5 * tf.reduce_sum(tf.square(pi.vf - self.r))
entropy = - tf.reduce_sum(prob_tf * log_prob_tf)
bs = tf.to_float(tf.shape(pi.x)[0])
self.loss = pi_loss + 0.5 * vf_loss - entropy * 0.01
# 20 represents the number of "local steps": the number of timesteps
# we run the policy before we update the parameters.
# The larger local steps is, the lower is the variance in our policy gradients estimate
# on the one hand; but on the other hand, we get less frequent parameter updates, which
# slows down learning. In this code, we found that making local steps be much
# smaller than 20 makes the algorithm more difficult to tune and to get to work.
self.runner = RunnerThread(env, pi, 20)
grads = tf.gradients(self.loss, pi.var_list)
tf.summary.scalar("model/policy_loss", pi_loss / bs)
tf.summary.scalar("model/value_loss", vf_loss / bs)
tf.summary.scalar("model/entropy", entropy / bs)
tf.summary.image("model/state", pi.x)
tf.summary.scalar("model/grad_global_norm", tf.global_norm(grads))
tf.summary.scalar("model/var_global_norm", tf.global_norm(pi.var_list))
self.summary_op = tf.summary.merge_all()
grads, _ = tf.clip_by_global_norm(grads, 40.0)
# copy weights from the parameter server to the local model
self.sync = tf.group(*[v1.assign(v2) for v1, v2 in zip(pi.var_list, self.network.var_list)])
grads_and_vars = list(zip(grads, self.network.var_list))
self.inc_step = self.global_step.assign_add(tf.shape(pi.x)[0])
# each worker has a different set of adam optimizer parameters
opt = tf.train.AdamOptimizer(1e-4)
self.train_op = tf.group(opt.apply_gradients(grads_and_vars), self.inc_step)
self.summary_writer = None
self.local_steps = 0
def start(self, sess, summary_writer):
self.runner.start_runner(sess, summary_writer)
self.summary_writer = summary_writer
def pull_batch_from_queue(self):
"""
self explanatory: take a rollout from the queue of the thread runner.
"""
rollout = self.runner.queue.get(timeout=3600.0)
while not rollout.terminal:
try:
rollout.extend(self.runner.queue.get_nowait())
except queue.Empty:
break
return rollout
def process(self, sess):
"""
process grabs a rollout that's been produced by the thread runner,
and updates the parameters. The update is then sent to the parameter
server.
"""
sess.run(self.sync) # copy weights from shared to local
rollout = self.pull_batch_from_queue()
batch = process_rollout(rollout, gamma=0.99, lambda_=1.0)
should_compute_summary = self.task == 0 and self.local_steps % 11 == 0
fetches = []
if should_compute_summary:
fetches.append(self.summary_op)
if not self.freeze:
fetches.append(self.train_op)
else:
# If we are frozen, we just bump the global step.
fetches.append(self.inc_step)
fetches.append(self.global_step)
feed_dict = {
self.local_network.x: batch.si,
self.ac: batch.a,
self.adv: batch.adv,
self.r: batch.r,
self.local_network.state_in[0]: batch.features[0],
self.local_network.state_in[1]: batch.features[1],
}
fetched = sess.run(fetches, feed_dict=feed_dict)
if should_compute_summary:
self.summary_writer.add_summary(tf.Summary.FromString(fetched[0]), fetched[-1])
self.summary_writer.flush()
self.local_steps += 1