-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathevaluate_final_acc.py
executable file
·339 lines (278 loc) · 14.4 KB
/
evaluate_final_acc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
import re
import os
import json, jsonlines
import uuid
import subprocess
import argparse
from typing import Dict, Any
import string
import _jsonnet
from lib import (
read_json,
read_jsonl,
write_json,
write_jsonl,
get_config_file_path_from_name_or_path,
)
from metrics.drop_answer_em_f1 import DropAnswerEmAndF1
from metrics.support_em_f1 import SupportEmF1Metric
from metrics.answer_support_recall import AnswerSupportRecallMetric
from metrics.squad_answer_em_f1 import SquadAnswerEmF1Metric
# Set your path accordingly
base_pred_path = './predictions/classifier/t5-large/flan_t5_xl/epoch/25/2024_04_19/01_53_50/'
def normalize_answer(s):
"""Lower text and remove punctuation, articles and extra whitespace."""
def remove_articles(text):
regex = re.compile(r"\b(a|an|the)\b", re.UNICODE)
return re.sub(regex, " ", text)
def white_space_fix(text):
return " ".join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return "".join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(s))))
def answer_extractor(potentially_cot: str) -> str:
# In a few experiments I forgot the configuring the answer extractor part
# and so the final answer is a cot chain instead. Instead of having to do
# all those exps again, I'm just doing answer_extraction here. This needs
# to be fixed later though.
if potentially_cot.startswith('"') and potentially_cot.endswith('"'):
potentially_cot = potentially_cot[1:-1]
cot_regex = re.compile(".* answer is:? (.*)\\.?")
match = cot_regex.match(potentially_cot)
if match:
output = match.group(1)
if output.endswith("."):
output = output[:-1]
else:
output = potentially_cot
return output
def load_ground_truths(
ground_truth_file_path: str,
) -> Dict:
id_to_ground_truths = {}
with jsonlines.open(ground_truth_file_path, 'r') as input_file:
for line in input_file:
#import pdb; pdb.set_trace()
qid = line['question_id']
answer = line['answers_objects'][0]['spans']
id_to_ground_truths[qid] = answer
return id_to_ground_truths
def load_predictions(prediction_file_path):
with open(prediction_file_path, "r") as file:
id_to_predictions = json.load(file)
return id_to_predictions
# Save
def save_results(results_dict, output_path):
output_path = output_path
print(output_path)
with open(output_path, "w") as file:
json.dump(results_dict, file, indent=4)
def calculate_acc(prediction, ground_truth):
for gt in ground_truth:
if gt in prediction:
return 1
return 0
def evaluate_by_dicts(data_name):
metrics = [SquadAnswerEmF1Metric()]
id_to_predictions = load_predictions(base_pred_path + data_name+'/' + data_name+'.json')
id_to_ground_truths = load_ground_truths('processed_data/'+data_name+'/test_subsampled.jsonl')
total_acc = 0
for id_ in set(id_to_ground_truths.keys()):
ground_truth = id_to_ground_truths[id_]
prediction = id_to_predictions[id_]
assert isinstance(prediction, (str, list))
if isinstance(prediction, str):
if prediction.strip().startswith("[") or prediction.strip().endswith("]"):
prediction = [e for e in prediction.replace('"', "").replace("[", "").replace("]", "").split(",")]
else:
prediction = [prediction]
assert isinstance(prediction, (list, tuple))
prediction = [str(e) for e in prediction]
prediction = [answer_extractor(_prediction) for _prediction in prediction] # Temporary.
acc = calculate_acc(normalize_answer(prediction[0]), [normalize_answer(i) for i in ground_truth])
total_acc = total_acc + acc
metrics[0](prediction, ground_truth)
total_acc = total_acc / len(id_to_predictions)
evaluation_results = metrics[0].get_metric()
evaluation_results['acc'] = total_acc
save_results(evaluation_results, base_pred_path + data_name+'/' +'eval_metic_result_acc.json')
def official_evaluate_by_dicts(data_name):
id_to_predictions = load_predictions(base_pred_path + data_name+'/' + data_name+'.json')
id_to_ground_truths = load_ground_truths('processed_data/'+data_name+'/test_subsampled.jsonl')
question_ids = list(id_to_predictions.keys())
for id_, prediction in id_to_predictions.items():
if isinstance(prediction, list) and len(prediction) == 1:
id_to_predictions[id_] = str(prediction[0])
elif isinstance(prediction, list) and len(prediction) > 1:
id_to_predictions[id_] = " ".join([str(e) for e in prediction])
print("WARNING: Found a list answer prediction, concatenating it.")
os.makedirs(".temp", exist_ok=True)
if data_name == "hotpotqa":
# prepare ground_truth file:
temp_ground_truth_file_path = os.path.join(".temp", uuid.uuid4().hex)
original_data = read_json(os.path.join("raw_data", "hotpotqa", "hotpot_dev_distractor_v1.json"))
filtered_data = [datum for datum in original_data if datum["_id"] in question_ids]
write_json(filtered_data, temp_ground_truth_file_path)
# prepare prediction file:
temp_prediction_file_path = os.path.join(".temp", uuid.uuid4().hex)
for prediction in id_to_predictions.values():
if not isinstance(prediction, str):
print("WARNING: Found an answer prediction that's not a string.")
data = {
"answer": {id_: str(prediction) for id_, prediction in id_to_predictions.items()},
"sp": {id_: [["", 0]] for id_, _ in id_to_predictions.items()},
}
write_json(data, temp_prediction_file_path)
# Run the command
temp_ground_truth_file_path = os.path.join(os.pardir, os.pardir, temp_ground_truth_file_path)
temp_prediction_file_path = os.path.join(os.pardir, os.pardir, temp_prediction_file_path)
temp_output_file_path = os.path.join(os.pardir, os.pardir, ".temp", uuid.uuid4().hex)
official_hotpotqa_evaluation_path = os.path.join("official_evaluation", "hotpotqa")
command = (
f"cd {official_hotpotqa_evaluation_path} ; "
+ f"python hotpot_evaluate_v1.py {temp_prediction_file_path} "
+ f"{temp_ground_truth_file_path} > {temp_output_file_path}"
)
status = subprocess.call(command, shell=True)
if status != 0:
raise Exception("Running the official evaluation script failed.")
temp_ground_truth_file_path = temp_ground_truth_file_path.replace(
os.path.join(os.pardir, os.pardir) + os.path.sep, ""
)
temp_prediction_file_path = temp_prediction_file_path.replace(
os.path.join(os.pardir, os.pardir) + os.path.sep, ""
)
temp_output_file_path = temp_output_file_path.replace(os.path.join(os.pardir, os.pardir) + os.path.sep, "")
if not os.path.exists(temp_output_file_path):
raise Exception("The official evaluation output file not found.")
with open(temp_output_file_path, "r") as file:
metrics_ = eval(file.read().strip())
metrics = {
"f1": round(metrics_["f1"], 5),
"em": round(metrics_["em"], 5),
"precision": round(metrics_["prec"], 5),
"recall": round(metrics_["recall"], 5),
"count": len(id_to_predictions),
'acc' : round(metrics_["acc"], 5),
}
os.remove(temp_ground_truth_file_path)
os.remove(temp_prediction_file_path)
os.remove(temp_output_file_path)
save_results(metrics, base_pred_path + data_name+'/' +'eval_metic_result_acc.json')
#return metrics
if data_name == "2wikimultihopqa":
# prepare ground_truth file:
temp_ground_truth_file_path = os.path.join(".temp", uuid.uuid4().hex)
original_data = read_json(os.path.join("raw_data", "2wikimultihopqa", "dev.json"))
filtered_data = [datum for datum in original_data if datum["_id"] in question_ids]
write_json(filtered_data, temp_ground_truth_file_path)
# prepare prediction file:
temp_prediction_file_path = os.path.join(".temp", uuid.uuid4().hex)
for prediction in id_to_predictions.values():
if not isinstance(prediction, str):
print("WARNING: Found an answer prediction that's not a string.")
data = {
"answer": {id_: str(prediction) for id_, prediction in id_to_predictions.items()},
"sp": {id_: [["", 0]] for id_, _ in id_to_predictions.items()},
"evidence": {id_: ["", "", ""] for id_, _ in id_to_predictions.items()},
}
write_json(data, temp_prediction_file_path)
# run the command
temp_ground_truth_file_path = os.path.join(os.pardir, os.pardir, temp_ground_truth_file_path)
temp_prediction_file_path = os.path.join(os.pardir, os.pardir, temp_prediction_file_path)
alias_file_path = os.path.join(os.pardir, os.pardir, "raw_data", "2wikimultihopqa", "id_aliases.json")
temp_output_file_path = os.path.join(os.pardir, os.pardir, ".temp", uuid.uuid4().hex)
evaluation_directory = os.path.join("official_evaluation", "2wikimultihopqa")
command = (
f"cd {evaluation_directory} ; "
+ f"python 2wikimultihop_evaluate_v1.1.py {temp_prediction_file_path} "
+ f"{temp_ground_truth_file_path} {alias_file_path} > {temp_output_file_path}"
)
subprocess.call(command, shell=True)
temp_ground_truth_file_path = temp_ground_truth_file_path.replace(
os.path.join(os.pardir, os.pardir) + os.path.sep, ""
)
temp_prediction_file_path = temp_prediction_file_path.replace(
os.path.join(os.pardir, os.pardir) + os.path.sep, ""
)
temp_output_file_path = temp_output_file_path.replace(os.path.join(os.pardir, os.pardir) + os.path.sep, "")
if not os.path.exists(temp_output_file_path):
raise Exception("The official evaluation output file not found.")
with open(temp_output_file_path, "r") as file:
metrics_ = json.loads(file.read().strip())
metrics = {
"f1": round(metrics_["f1"] / 100, 5),
"em": round(metrics_["em"] / 100, 5),
"precision": round(metrics_["prec"] / 100, 5),
"recall": round(metrics_["recall"] / 100, 5),
"count": len(id_to_predictions),
'acc' : round(metrics_["acc"] / 100, 5),
}
os.remove(temp_ground_truth_file_path)
os.remove(temp_prediction_file_path)
os.remove(temp_output_file_path)
#return metrics
save_results(metrics, base_pred_path + data_name+'/' +'eval_metic_result_acc.json')
if data_name == "musique":
# prepare ground_truth file:
temp_ground_truth_file_path = os.path.join(".temp", uuid.uuid4().hex)
original_data = read_jsonl(os.path.join("raw_data", "musique", "musique_ans_v1.0_dev.jsonl"))
original_keyed_data = {datum["id"]: datum for datum in original_data}
filtered_data = [original_keyed_data[qid] for qid in question_ids]
write_jsonl(filtered_data, temp_ground_truth_file_path)
# prepare prediction file:
temp_prediction_file_path = os.path.join(".temp", uuid.uuid4().hex)
for prediction in id_to_predictions.values():
if not isinstance(prediction, str):
print("WARNING: Found an answer prediction that's not a string.")
data = [
{
"id": id_,
"predicted_answer": str(id_to_predictions[id_]),
"predicted_support_idxs": [0, 1],
"predicted_answerable": True,
}
for id_ in question_ids
]
write_jsonl(data, temp_prediction_file_path)
# run the command
temp_ground_truth_file_path = os.path.join(os.pardir, os.pardir, temp_ground_truth_file_path)
temp_prediction_file_path = os.path.join(os.pardir, os.pardir, temp_prediction_file_path)
temp_output_file_path = os.path.join(os.pardir, os.pardir, ".temp", uuid.uuid4().hex)
evaluation_directory = os.path.join("official_evaluation", "musique")
command = (
f"cd {evaluation_directory} ; "
+ f"python evaluate_v1.0.py {temp_prediction_file_path} {temp_ground_truth_file_path} "
+ f"--output_filepath {temp_output_file_path}"
)
subprocess.call(command, shell=True)
temp_ground_truth_file_path = temp_ground_truth_file_path.replace(
os.path.join(os.pardir, os.pardir) + os.path.sep, ""
)
temp_prediction_file_path = temp_prediction_file_path.replace(
os.path.join(os.pardir, os.pardir) + os.path.sep, ""
)
temp_output_file_path = temp_output_file_path.replace(os.path.join(os.pardir, os.pardir) + os.path.sep, "")
if not os.path.exists(temp_output_file_path):
raise Exception("The official evaluation output file not found.")
with open(temp_output_file_path, "r") as file:
metrics_ = json.loads(file.read().strip())
metrics = {
"f1": round(metrics_["answer_f1"], 3),
"em": round(metrics_["answer_em"], 3) if "answer_em" in metrics_ else None,
"count": len(id_to_predictions),
"acc": round(metrics_["answer_acc"], 3),
}
os.remove(temp_ground_truth_file_path)
os.remove(temp_prediction_file_path)
os.remove(temp_output_file_path)
#return metrics
save_results(metrics, base_pred_path + data_name+'/' +'eval_metic_result_acc.json')
lst_data_name = ['musique', 'hotpotqa', '2wikimultihopqa', 'nq', 'trivia', 'squad']
for data_name in ['nq', 'trivia', 'squad']:
evaluate_by_dicts(data_name)
for data_name in ['musique', 'hotpotqa', '2wikimultihopqa']:
official_evaluate_by_dicts(data_name)