forked from BakingBrains/Pose_estimation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path图片检测(可支持多个手掌).py
80 lines (70 loc) · 2.49 KB
/
图片检测(可支持多个手掌).py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import cv2
import mediapipe as mp
from os import listdir
mp_drawing = mp.solutions.drawing_utils
mp_hands = mp.solutions.hands
# For static images:
hands = mp_hands.Hands(
static_image_mode=True,
max_num_hands=5,
min_detection_confidence=0.2)
img_path = './multi_hands/'
save_path = './'
index = 0
file_list = listdir(img_path)
for filename in file_list:
index += 1
file_path = img_path + filename
# Read an image, flip it around y-axis for correct handedness output (see
# above).
image = cv2.flip(cv2.imread(file_path), 1)
# Convert the BGR image to RGB before processing.
results = hands.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
# Print handedness and draw hand landmarks on the image.
print('Handedness:', results.multi_handedness)
if not results.multi_hand_landmarks:
continue
image_hight, image_width, _ = image.shape
annotated_image = image.copy()
for hand_landmarks in results.multi_hand_landmarks:
print('hand_landmarks:', hand_landmarks)
print(
f'Index finger tip coordinates: (',
f'{hand_landmarks.landmark[mp_hands.HandLandmark.INDEX_FINGER_TIP].x * image_width}, '
f'{hand_landmarks.landmark[mp_hands.HandLandmark.INDEX_FINGER_TIP].y * image_hight})'
)
mp_drawing.draw_landmarks(
annotated_image, hand_landmarks, mp_hands.HAND_CONNECTIONS)
cv2.imwrite(
save_path + str(index) + '.png', cv2.flip(annotated_image, 1))
hands.close()
# For webcam input:
hands = mp_hands.Hands(
min_detection_confidence=0.5, min_tracking_confidence=0.5)
cap = cv2.VideoCapture(0)
while cap.isOpened():
success, image = cap.read()
if not success:
print("Ignoring empty camera frame.")
# If loading a video, use 'break' instead of 'continue'.
continue
# Flip the image horizontally for a later selfie-view display, and convert
# the BGR image to RGB.
image = cv2.cvtColor(cv2.flip(image, 1), cv2.COLOR_BGR2RGB)
# To improve performance, optionally mark the image as not writeable to
# pass by reference.
image.flags.writeable = False
results = hands.process(image)
# Draw the hand annotations on the image.
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
if results.multi_hand_landmarks:
for hand_landmarks in results.multi_hand_landmarks:
mp_drawing.draw_landmarks(
image, hand_landmarks, mp_hands.HAND_CONNECTIONS)
cv2.imshow('result', image)
if cv2.waitKey(5) & 0xFF == 27:
break
cv2.destroyAllWindows()
hands.close()
cap.release()