-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
72 lines (57 loc) · 2.36 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
""" A script created to test the edgydata database, but in doing so also
provide some interesting data
"""
from __future__ import print_function
from datetime import datetime, timedelta
from edgydata.backend.hybrid import Hybrid
from edgydata.visualize import chart
from edgydata.aggregate import aggregate
from edgydata.time import get_current_datetime
def main():
""" Generate some interesting information about the data """
myvalues = values()
graphs()
print(myvalues)
def values():
""" Function that generates some interesting values from the data """
# Examples of values to get:
# Lowest generation in a day
# Highest generation in a day
# Day of the year that gives the lowest average generation
# Day of the year that gives the highest average generation
value_dict = {}
hdb = Hybrid(debug=False)
all_raw_data = hdb.get_power()
from edgydata.aggregate import _has_duplicate_times
if _has_duplicate_times(all_raw_data):
raise ValueError
highest_period = sorted(all_raw_data, key=lambda x: x.generated)[-1]
high_period = highest_period.energy.generated
value_dict["Highest generation in a period"] = high_period
daily_data = aggregate(all_raw_data, period_length=timedelta(days=1))
sorted_data = sorted(daily_data, key=lambda x: x.generated)
highest_day = sorted_data[-1]
value_dict["Highest generation in a day"] = highest_day.energy.generated
lowest_day = sorted_data[0]
value_dict["Lowest generation in a day"] = lowest_day.energy.generated
return value_dict
def graphs():
""" Function that generates some interesting graphs from the data """
data_dict = {}
hdb = Hybrid(debug=False)
twodaysago = get_current_datetime() - timedelta(days=2)
mine = hdb.get_power(start=twodaysago)
data_dict["Last two day's figures"] = mine
for title, chartdata in data_dict.items():
chart(chartdata, title=title)
data_dict["All-time"] = hdb.get_power()
one_day = timedelta(days=1)
data_dict["All-time by day"] = aggregate(data_dict["All-time"],
period_length=one_day)
# Average generation by day of year
for title, chartdata in data_dict.items():
chart(chartdata, title=title)
# Average generation by time of day
# Average consumption by time of day
if __name__ == "__main__":
main()