From 06db4b15a644bf57b2d9723ccab93a9fa0d5e02f Mon Sep 17 00:00:00 2001 From: Mihai Cara Date: Sun, 22 Dec 2024 07:33:21 -0500 Subject: [PATCH] further improvements --- src/stcal/alignment/util.py | 188 +++++++++++++++++------------------- tests/test_alignment.py | 8 +- 2 files changed, 91 insertions(+), 105 deletions(-) diff --git a/src/stcal/alignment/util.py b/src/stcal/alignment/util.py index d239d559..d39bd519 100644 --- a/src/stcal/alignment/util.py +++ b/src/stcal/alignment/util.py @@ -4,7 +4,8 @@ import functools import logging import re -from typing import TYPE_CHECKING +import typing +from typing import TYPE_CHECKING, Tuple import warnings if TYPE_CHECKING: @@ -143,10 +144,16 @@ def _generate_tranform( return transform -def _get_axis_min_and_bounding_box(footprints: list[np.ndarray], - ref_wcs: gwcs.wcs.WCS) -> tuple: +def _get_bounding_box_with_offsets( + footprints: list[np.ndarray], + ref_wcs: gwcs.wcs.WCS, + fiducial: Sequence, + crpix: Sequence | None, + shape: Sequence | None + ) -> Tuple[tuple, tuple, astmodels.Model]: """ Calculates axis minimum values and bounding box. + Calculates the offsets to the transform. Parameters ---------- @@ -157,28 +164,78 @@ def _get_axis_min_and_bounding_box(footprints: list[np.ndarray], ref_wcs : ~gwcs.wcs.WCS The reference WCS object. + fiducial : tuple + A tuple containing the world coordinates of the fiducial point. + + crpix : list or tuple, optional + 0-indexed pixel coordinates of the reference pixel. + + shape : tuple, optional + Shape (using `numpy.ndarray` convention) of the image array associated + with the ``ref_wcs``. + + Returns ------- + + tuple + A tuple containing the bounding box region in the format + ((x0_lower, x0_upper), (x1_lower, x1_upper), ...). + tuple - A tuple containing two elements: - 1 - a :py:class:`np.ndarray` with the minimum value in each axis; - 2 - a tuple containing the bounding box region in the format - ((x0_lower, x0_upper), (x1_lower, x1_upper)). + Shape of the image. When ``shape`` argument is `None`, shape is + determined from the upper limit of the computed bounding box, otherwise + input value of ``shape`` is returned. + + ~astropy.modeling.Model + A model with the offsets to be added to the WCS's transform. + """ domain_bounds = np.hstack([ref_wcs.backward_transform(*f.T) for f in footprints]) - axis_min_values = np.min(domain_bounds, axis=1) - domain_bounds = (domain_bounds.T - axis_min_values).T - - output_bounding_box = [] - for axis in ref_wcs.output_frame.axes_order: - axis_min, axis_max = ( - 0.0, - domain_bounds[axis].max(), + domain_min = np.min(domain_bounds, axis=1) + domain_max = np.max(domain_bounds, axis=1) + + native_crpix = ref_wcs.backward_transform(*fiducial) + + if crpix is None: + # shift the coordinates by domain_min so that all input footprints + # will project to positive coordinates in the offsetted ref_wcs + offsets = tuple(ncrp - dmin for ncrp, dmin in zip(native_crpix, domain_min)) + + else: + # assume 0-based CRPIX and require that fiducial would map to the user + # defined crpix value: + offsets = tuple( + crp - ncrp for ncrp, crp in zip(native_crpix, crpix) + ) + + # Also offset domain limits: + domain_min += offsets + domain_max += offsets + + if shape is None: + shape = tuple(int(dmax + 0.5) for dmax in domain_max[::-1]) + bounding_box = tuple( + (-0.5, s - 0.5) for s in shape[::-1] + ) + # code to reproduce old results (for old unit test test_wcs_from_footprints) + # bounding_box = tuple( + # (0.0, dmax) for dmax in domain_max + # ) + # shape = tuple(int(dmax + 0.5) for dmax in domain_max[::-1]) + + else: + # trim upper bounding box limits + bounding_box = tuple( + (max(0, int(dmin + 0.5)) - 0.5, min(int(dmax + 0.5), sz) - 0.5) + for dmin, dmax, sz in zip(domain_min, domain_max, shape[::-1]) ) - # populate output_bounding_box - output_bounding_box.append((axis_min, axis_max)) - return (axis_min_values, output_bounding_box) + model = astmodels.Shift(-offsets[0], name="crpix1") + for k, shift in enumerate(offsets[1:]): + model = model.__and__(astmodels.Shift(-shift, name=f"crpix{k + 2:d}")) + + return bounding_box, shape, model def _calculate_fiducial(footprints: list[np.ndarray], @@ -208,53 +265,6 @@ def _calculate_fiducial(footprints: list[np.ndarray], return _compute_fiducial_from_footprints(footprints) -def _calculate_offsets(fiducial: tuple, - wcs: gwcs.wcs.WCS | None, - axis_min_values: np.ndarray | None, - crpix: Sequence | None) -> astmodels.Model: - """ - Calculates the offsets to the transform. - - Parameters - ---------- - fiducial : tuple - A tuple containing the world coordinates of the fiducial point. - - wcs : ~gwcs.wcs.WCS - A WCS object. It will be used to determine the - - axis_min_values : np.ndarray - A two-elements array containing the minimum pixel value for each axis. - - crpix : list or tuple - 0-indexed pixel coordinates of the reference pixel. - - Returns - ------- - ~astropy.modeling.Model - A model with the offsets to be added to the WCS's transform. - - Notes - ----- - If ``crpix=None``, then ``fiducial``, ``wcs``, and ``axis_min_values`` must be - provided, in which case, the offsets will be calculated using the WCS object to - find the pixel coordinates of the fiducial point and then correct it by the minimum - pixel value for each axis. - """ - if crpix is None and fiducial is not None and wcs is not None and axis_min_values is not None: - offset1, offset2 = wcs.backward_transform(*fiducial) - offset1 -= axis_min_values[0] - offset2 -= axis_min_values[1] - elif crpix is None: - msg = "If crpix is not provided, fiducial, wcs, and axis_min_values must be provided." - raise ValueError(msg) - else: - # assume 0-based CRPIX - offset1, offset2 = crpix - - return astmodels.Shift(-offset1, name="crpix1") & astmodels.Shift(-offset2, name="crpix2") - - def _calculate_new_wcs(wcs: gwcs.wcs.WCS, shape: Sequence | None, footprints: list[np.ndarray], @@ -303,45 +313,23 @@ def _calculate_new_wcs(wcs: gwcs.wcs.WCS, transform=transform, input_frame=wcs.input_frame, ) - axis_min_values, bbox = _get_axis_min_and_bounding_box(footprints, wcs_new) - offsets = _calculate_offsets( + + bounding_box, shape, offsets = _get_bounding_box_with_offsets( + footprints, + ref_wcs=wcs_new, fiducial=fiducial, - wcs=wcs_new, - axis_min_values=axis_min_values, crpix=crpix, + shape=shape ) - if crpix is None: - output_bounding_box = bbox - else: - output_bounding_box = [] - for axis_range, minval, shift in zip(bbox, axis_min_values, crpix): - output_bounding_box.append( - ( - axis_range[0] + shift + minval, - axis_range[1] + shift + minval - ) - ) + if any(d < 2 for d in shape): + raise ValueError( + "Computed shape for the output image using provided " + "WCS parameters is too small." + ) wcs_new.insert_transform("detector", offsets, after=True) - wcs_new.bounding_box = output_bounding_box - - if shape is None: - shape = [] - for k, axs in enumerate(output_bounding_box[::-1]): - upper = int(axs[1] + 0.5) - if upper < 1: - log.warning( - "Input images do not overlap with created WCS. " - "Consider adjusting crval and/or crpix values." - ) - log.warning( - "Setting minimum array dimension for axis %d to 10." - % (len(output_bounding_box) - k) - ) - upper = 10 - shape.append(upper) - + wcs_new.bounding_box = bounding_box wcs_new.pixel_shape = shape[::-1] wcs_new.array_shape = shape return wcs_new @@ -852,9 +840,7 @@ def compute_s_region_imaging(wcs: gwcs.wcs.WCS, footprint = footprint[:2, :] # Make sure RA values are all positive - negative_ind = footprint[0] < 0 - if negative_ind.any(): - footprint[0][negative_ind] = 360 + footprint[0][negative_ind] + np.mod(footprint[0], 360, out=footprint[0]) footprint = footprint.T return compute_s_region_keyword(footprint) diff --git a/tests/test_alignment.py b/tests/test_alignment.py index c7bf2f32..07d63028 100644 --- a/tests/test_alignment.py +++ b/tests/test_alignment.py @@ -213,10 +213,10 @@ def test_wcs_from_footprints(s_regions): # check that all elements of footprint match the *vertices* of the new # combined WCS footprnt = wcs.footprint() - assert all(np.isclose(footprnt[0], wcs(0, 0))) - assert all(np.isclose(footprnt[1], wcs(0, 4))) - assert all(np.isclose(footprnt[2], wcs(4, 4))) - assert all(np.isclose(footprnt[3], wcs(4, 0))) + assert all(np.isclose(footprnt[0], wcs(-0.5, -0.5))) + assert all(np.isclose(footprnt[1], wcs(-0.5, 3.5))) + assert all(np.isclose(footprnt[2], wcs(3.5, 3.5))) + assert all(np.isclose(footprnt[3], wcs(3.5, -0.5))) # check that fiducials match their expected coords in the new combined WCS assert all(np.isclose(wcs_1(0, 0), wcs(2.5, 1.5)))