diff --git a/jwql/instrument_monitors/nirspec_monitors/ta_monitors/msata_monitor.py b/jwql/instrument_monitors/nirspec_monitors/ta_monitors/msata_monitor.py index c0ea6201c..3f0fade13 100755 --- a/jwql/instrument_monitors/nirspec_monitors/ta_monitors/msata_monitor.py +++ b/jwql/instrument_monitors/nirspec_monitors/ta_monitors/msata_monitor.py @@ -1304,7 +1304,7 @@ def plt_mags_time(self): """, ) self.date_range.js_on_change("value", callback) - mini_view = CDSView(filters=[self.date_filter]) + mini_view = CDSView(filter=self.date_filter) # create the bokeh plot plot = figure( @@ -1408,14 +1408,18 @@ def setup_date_range(self): return indices; """, ) - self.date_view = CDSView(filters=[self.date_filter]) + self.date_view = CDSView(filter=self.date_filter) - def mk_plt_layout(self): - """Create the bokeh plot layout""" - self.query_results = pd.DataFrame( - list(NIRSpecMsataStats.objects.all().values()) - ) - self.source = ColumnDataSource(data=self.query_results) + def mk_plt_layout(self, plot_data): + """Create the bokeh plot layout + + Parameters + ---------- + plot_data : pandas.DateFrame + Pandas data frame of data to plot. + """ + + self.source = ColumnDataSource(data=plot_data) # add a time array to the data source self.add_time_column() @@ -1815,8 +1819,14 @@ def run(self): # Add MSATA data to stats table. self.add_msata_data() - # Generate plot -- the database is queried in mk_plt_layout(). - self.mk_plt_layout() + # Query results and convert into pandas df. + self.query_results = pd.DataFrame( + list(NIRSpecMsataStats.objects.all().values()) + ) + + # Generate plot + self.mk_plt_layout(self.query_results) + logging.info( "\tNew output plot file will be written as: {}".format( self.output_file_name diff --git a/jwql/instrument_monitors/nirspec_monitors/ta_monitors/wata_monitor.py b/jwql/instrument_monitors/nirspec_monitors/ta_monitors/wata_monitor.py index e11955420..a2f3301e5 100755 --- a/jwql/instrument_monitors/nirspec_monitors/ta_monitors/wata_monitor.py +++ b/jwql/instrument_monitors/nirspec_monitors/ta_monitors/wata_monitor.py @@ -797,13 +797,18 @@ def setup_date_range(self): return indices; """, ) - self.date_view = CDSView(filters=[filt]) + self.date_view = CDSView(filter=filt) - def mk_plt_layout(self): - """Create the bokeh plot layout""" - self.query_results = pd.DataFrame(list(NIRSpecWataStats.objects.all().values())) + def mk_plt_layout(self, plot_data): + """Create the bokeh plot layout - self.source = ColumnDataSource(data=self.query_results) + Parameters + ---------- + plot_data : pandas.DataFrame + Dataframe of data to plot in bokeh + """ + + self.source = ColumnDataSource(data=plot_data) # add a time array to the data source self.add_time_column() @@ -1144,8 +1149,10 @@ def run(self): # Add WATA data to stats table. self.add_wata_data() - # Generate plot -- the database is queried in mk_plt_layout(). - self.mk_plt_layout() + # Get Results from database table + self.query_results = pd.DataFrame(list(NIRSpecWataStats.objects.all().values())) + # Generate plot. + self.mk_plt_layout(self.query_results) logging.info( "\tNew output plot file will be written as: {}".format( self.output_file_name diff --git a/jwql/tests/test_nrs_ta_plotting.py b/jwql/tests/test_nrs_ta_plotting.py new file mode 100644 index 000000000..5ee04a6ff --- /dev/null +++ b/jwql/tests/test_nrs_ta_plotting.py @@ -0,0 +1,167 @@ +"""Test NRS TA (WATA & MSATA) plotting bokeh routines. + +Author +______ + - Mees Fix +""" + +import datetime +import pandas as pd + + +from jwql.instrument_monitors.nirspec_monitors.ta_monitors.msata_monitor import MSATA +from jwql.instrument_monitors.nirspec_monitors.ta_monitors.wata_monitor import WATA + + +def test_nrs_msata_bokeh(): + test_row = { + "id": 1, + "filename": "filename", + "date_obs": datetime.datetime( + 1990, 11, 15, 20, 28, 59, 8000, tzinfo=datetime.timezone.utc + ), + "visit_id": "visit_id", + "tafilter": "tafilter", + "detector": "detector", + "readout": "readout", + "subarray": "subarray", + "num_refstars": 1, + "ta_status": "ta_status", + "v2halffacet": 1.0, + "v3halffacet": 1.0, + "v2msactr": 1.0, + "v3msactr": 1.0, + "lsv2offset": 1.0, + "lsv3offset": 1.0, + "lsoffsetmag": 1.0, + "lsrolloffset": 1.0, + "lsv2sigma": 1.0, + "lsv3sigma": 1.0, + "lsiterations": 1, + "guidestarid": 1, + "guidestarx": 1.0, + "guidestary": 1.0, + "guidestarroll": 1.0, + "samx": 1.0, + "samy": 1.0, + "samroll": 1.0, + "box_peak_value": [ + 1.0, + 1.0, + ], + "reference_star_mag": [ + 1.0, + 1.0, + ], + "convergence_status": [ + "convergence_status", + "convergence_status", + ], + "reference_star_number": [ + 1, + 1, + ], + "lsf_removed_status": [ + "lsf_removed_status", + "lsf_removed_status", + ], + "lsf_removed_reason": [ + "lsf_removed_reason", + "lsf_removed_reason", + ], + "lsf_removed_x": [ + 1.0, + 1.0, + ], + "lsf_removed_y": [ + 1.0, + 1.0, + ], + "planned_v2": [ + 1.0, + 1.0, + ], + "planned_v3": [ + 1.0, + 1.0, + ], + "stars_in_fit": 1, + "entry_date": datetime.datetime( + 1990, 11, 15, 20, 28, 59, 8000, tzinfo=datetime.timezone.utc + ), + } + + df = pd.DataFrame([test_row]) + monitor = MSATA() + monitor.output_file_name = "msata_output.html" + monitor.mk_plt_layout(df) + + +def test_nrs_wata_bokeh(): + test_row = { + "id": 1, + "filename": "filename", + "date_obs": datetime.datetime( + 1990, 11, 15, 20, 28, 59, 8000, tzinfo=datetime.timezone.utc + ), + "visit_id": "visit_id", + "tafilter": "tafilter", + "readout": "readout", + "ta_status": "ta_status", + "star_name": 1, + "star_ra": 1.0, + "star_dec": 1.0, + "star_mag": 1.0, + "star_catalog": 1, + "planned_v2": 1.0, + "planned_v3": 1.0, + "stamp_start_col": 1, + "stamp_start_row": 1, + "star_detector": "star_detector", + "max_val_box": 1.0, + "max_val_box_col": 1, + "max_val_box_row": 1, + "iterations": 1, + "corr_col": 1, + "corr_row": 1, + "stamp_final_col": 1.0, + "stamp_final_row": 1.0, + "detector_final_col": 1.0, + "detector_final_row": 1.0, + "final_sci_x": 1.0, + "final_sci_y": 1.0, + "measured_v2": 1.0, + "measured_v3": 1.0, + "ref_v2": 1.0, + "ref_v3": 1.0, + "v2_offset": 1.0, + "v3_offset": 1.0, + "sam_x": 1.0, + "sam_y": 1.0, + "entry_date": datetime.datetime( + 1990, 11, 15, 20, 28, 59, 8000, tzinfo=datetime.timezone.utc + ), + "nrsrapid_f140x": [ + 1.0 + ], # Not in DB but added to column source data in algorithm, adding here + "nrsrapid_f110w": [ + 1.0 + ], # Not in DB but added to column source data in algorithm, adding here + "nrsrapid_clear": [ + 1.0 + ], # Not in DB but added to column source data in algorithm, adding here + "nrsrapidd6_f140x": [ + 1.0 + ], # Not in DB but added to column source data in algorithm, adding here + "nrsrapidd6_f110w": [ + 1.0 + ], # Not in DB but added to column source data in algorithm, adding here + "nrsrapidd6_clear": [ + 1.0 + ], # Not in DB but added to column source data in algorithm, adding here + } + + df = pd.DataFrame([test_row]) + monitor = WATA() + monitor.output_file_name = "wata_output.html" + monitor.mk_plt_layout(df)