diff --git a/notebooks/WFC3/photometry_examples/.ipynb_checkpoints/phot_examples-checkpoint.ipynb b/notebooks/WFC3/photometry_examples/.ipynb_checkpoints/phot_examples-checkpoint.ipynb deleted file mode 100644 index f9e4f12d3..000000000 --- a/notebooks/WFC3/photometry_examples/.ipynb_checkpoints/phot_examples-checkpoint.ipynb +++ /dev/null @@ -1,878 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "3417f03b", - "metadata": {}, - "source": [ - "\n", - "# Synthetic Photometry Examples for WFC3\n", - "***\n", - "## Learning Goals\n", - "\n", - "By the end of this tutorial, you will:\n", - "\n", - "- Specify WFC3 bandpasses in `stsynphot` and define spectra with `synphot`.\n", - "- Compute WFC3 zeropoint values and an encircled energy correction.\n", - "- Renormalize a spectrum and predict its effective stimulus in another filter.\n", - "- Find the photometric transformation between two bandpasses.\n", - "- Find the UV color term across the two UVIS chips for different spectral types.\n", - "- Plot bandpasses and spectra.\n", - "\n", - "## Table of Contents\n", - "\n", - "[Introduction](#intro)
\n", - "[1. Imports](#imports)
\n", - "[2. Bandpasses and spectra](#band_spec)
\n", - "- [2.1 Set up bandpasses](#band)
\n", - "- [2.2 Define spectra](#spec)
\n", - "\n", - "[3. Examples](#ex)
\n", - "- [Example 1a: Compute the inverse sensitivity and zeropoint](#e1)
\n", - "- [Example 1b: Compute an encircled energy correction](#e1b)
\n", - "- [Example 2: Renormalize a spectrum and predict its effective stimulus in another filter](#e2)
\n", - "- [Example 3: Find the photometric transformation between two bandpasses](#e3)
\n", - "- [Example 4a: Find the UV color term across the two UVIS chips for different spectral types](#e4)
\n", - "- [Example 4b: Plot bandpasses and spectra](#e4b)\n", - "\n", - "[4. Conclusions](#conclusion)
\n", - "[Additional Resources](#resources)
\n", - "[About the Notebook](#about)
\n", - "[Citations](#cite)
" - ] - }, - { - "cell_type": "markdown", - "id": "b3415f46", - "metadata": {}, - "source": [ - "\n", - "## Introduction\n", - "\n", - "This notebook contains several examples of how to use the `synphot` and `stsynphot` modules for various photometric purposes. \n", - "\n", - "`synphot` is a Python module that facilitates synthetic photometry, which has an extension module called `stsynphot` to add support for STScI missions. `synphot` is meant to be a replacement for AstroLib `pysynphot`. \n", - "\n", - "Examples 1, 2, and 3 are based on those found in Section 9.1.10 of the 2018 version of the WFC3 Data Handbook. \n", - "\n", - "`stsynphot` requires access to data distributed by the [Calibration Data Reference System](https://hst-crds.stsci.edu/) (CRDS) in order to operate. Both packages look for an environment variable called `PYSYN_CDBS` to find the directory containing these data.\n", - "\n", - "Users can obtain these data files from the CDRS. Information on how to obtain the most up-to-date reference files (and what they contain) can be found [here](https://www.stsci.edu/hst/instrumentation/reference-data-for-calibration-and-tools/synphot-throughput-tables). An example of how to download the files with `curl` and set up this environment variable is presented below.\n", - "\n", - "For detailed instructions on how to install and set up these packages, see the [synphot](https://synphot.readthedocs.io/en/latest/#installation-and-setup) and [stsynphot](https://stsynphot.readthedocs.io/en/latest/#installation-and-setup) documentation." - ] - }, - { - "cell_type": "markdown", - "id": "f4d1218e", - "metadata": {}, - "source": [ - "\n", - "## 1. Imports\n", - "\n", - "This notebook assumes you have created the virtual environment in [WFC3 Library's](https://github.com/spacetelescope/WFC3Library) installation instructions.\n", - "\n", - "We import:\n", - "- *os* for setting environment variables\n", - "\n", - "- *numpy* for handling array functions\n", - "- *pandas* for managing data\n", - "- *matplotlib.pyplot* for plotting data\n", - "\n", - "- *synphot* and *stsynphot* for evaluating synthetic photometry\n", - "- *astropy.units* and *synphot.units* for handling units\n", - "\n", - "Additionally, we will need to set the `PYSYN_CDBS` environment variable *before* importing stsynphot. We will also create a Vega spectrum using synphot's inbuilt `from_vega()` method, as the latter package will supercede this method's functionality and require a downloaded copy of the latest Vega spectrum to be provided." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "83593365", - "metadata": {}, - "outputs": [], - "source": [ - "%matplotlib notebook\n", - "\n", - "import os\n", - "\n", - "import numpy as np\n", - "import pandas as pd\n", - "import matplotlib.pyplot as plt\n", - "\n", - "import synphot as syn\n", - "\n", - "from astropy import units as u\n", - "from synphot import units as su\n", - "\n", - "vegaspec = syn.SourceSpectrum.from_vega()" - ] - }, - { - "cell_type": "markdown", - "id": "06d98189", - "metadata": {}, - "source": [ - "This section obtains the WFC3 throughput component tables for use with `synphot`. If reference files need to be downloaded, please uncomment and execute the code block below." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "10709b0c", - "metadata": {}, - "outputs": [], - "source": [ - "# cmd_input = 'curl -O https://ssb.stsci.edu/trds/tarfiles/synphot1.tar.gz'\n", - "# os.system(cmd_input)" - ] - }, - { - "cell_type": "markdown", - "id": "054629f8", - "metadata": {}, - "source": [ - "Once the downloaded is complete, unzip the file and set the environment variable `PYSYN_CDBS` to the path of the reference files. To do so, uncomment and execute the relevant line from the code block below. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "162bc0c7", - "metadata": {}, - "outputs": [], - "source": [ - "# os.environ['PYSYN_CDBS'] = '/path/to/my/reference/files/'" - ] - }, - { - "cell_type": "markdown", - "id": "ebbed337", - "metadata": {}, - "source": [ - "Now, after having set up `PYSYN_CDBS`, we import stsynphot." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "487dd24c", - "metadata": {}, - "outputs": [], - "source": [ - "import stsynphot as stsyn" - ] - }, - { - "cell_type": "markdown", - "id": "7f8346b2", - "metadata": {}, - "source": [ - "## 2. Bandpasses and spectra \n", - "\n", - "### 2.1 Set up bandpasses \n", - "\n", - "All of the examples below require us to define a bandpass. Bandpasses are defined in `stsynphot` using a string of comma-separated keywords that represents a particular observation mode (obsmode). For WFC3, an obsmode string will, at minimum, look something like: `\"wfc3, [detector], [filter]\"`. E.g. `\"wfc3, uvis1, f606w\"` will get you the bandpass for the F606W filter on WFC3's UVIS1 detector. One may also specify an aperture size in arcseconds with `aper#value` and a Modified Julian Date (to account for time-dependent changes in the UVIS detector sensitivity) with `mjd#value`.\n", - "\n", - "The documentation [here](https://stsynphot.readthedocs.io/en/latest/stsynphot/obsmode.html) provides a further overview of how to construct an observation mode, and includes a link to the full set of available obsmode keywords.\n", - "\n", - "### 2.2 Define spectra \n", - "\n", - "Examples 2-4 require us to define a spectrum. Examples for generating some commonly useful spectra using `synphot` are embedded here:\n", - "\n", - "\n", - "```python\n", - "# Blackbody\n", - "bb_temp = 5800 * u.K\n", - "\n", - "model = syn.models.BlackBody1D(bb_temp)\n", - "spec = syn.SourceSpectrum(model)\n", - "\n", - "# Power law \n", - "pl_index = 0\n", - "\n", - "model = syn.models.PowerLawFlux1D(amplitude=flux_in, x_0=wl_in, alpha=pl_index)\n", - "spec = syn.SourceSpectrum(model)\n", - " \n", - "# Load from a FITS table (e.g. a CALSPEC spectrum)\n", - "spec = syn.SourceSpectrum.from_file('/path/to/your/spectrum.fits')\n", - "```\n", - "\n", - "Note:\n", - "\n", - "- `synphot.models.BlackBody1D` outputs a function according to Planck's law, which means that the output unit carries an *implicit* \"per unit solid angle,\" in steradians. `BlackBodyNorm1D`, outputs a spectrum that is normalized to a 1 solar radius star at a distance of 1 kpc.\n", - "\n", - "- `synphot.models.PowerLawFlux1D` uses the definition $ f(x) = A (\\frac{x}{x_0})^{-\\alpha} $. We pass `flux_in` as $A$, and `wl_in` as $x_0$. Note the negative sign in front of the power law index $\\alpha$. The model can generate curves with $x$ as either frequency or wavelength, but the example here assumes that wavelength will be used. The y-axis unit will be taken from $A$. \n", - "\n", - "- A wide array of reference spectra are available for download from spectral atlases located [here](https://www.stsci.edu/hst/instrumentation/reference-data-for-calibration-and-tools/astronomical-catalogs)." - ] - }, - { - "cell_type": "markdown", - "id": "aec1c476", - "metadata": {}, - "source": [ - "\n", - "## 3. Examples\n", - "\n", - "\n", - "### Example 1a: Compute the inverse sensitivity and zeropoint \n", - "**Compute inverse sensitivity (PHOTFLAM) and zeropoint values (STmag, ABmag, and Vegamag) for F814W on UVIS1 in an infinite (6.0”) aperture.**\n", - "\n", - "This example should reproduce the values found in Table 6 of [WFC3 ISR 2021-04](https://www.stsci.edu/files/live/sites/www/files/home/hst/instrumentation/wfc3/documentation/instrument-science-reports-isrs/_documents/2021/WFC3_ISR_2021-04.pdf), the relevant row of which is reproduced here:\n", - "\n", - "| Filter \t| Pivot Wavelength \t| PHOTFLAM \t| STMAG \t| ABMAG \t| VEGAMAG \t|\n", - "|:--------\t|:-----------------\t|:------------\t|:--------\t|:--------\t|:---------\t|\n", - "| F814W \t| 8039.1 Å \t| 1.4980e-19 \t| 25.961 \t| 25.127 \t| 24.699 \t|\n", - "\n", - "We include the keywords `'aper#6.0'` and `'mjd#55008'` in our obsmode string to match the aperture and reference epoch used for the calculations in this ISR.\n", - "\n", - "The WFC3 Zeropoints notebook, which can be found in the [WFC3 Library](https://github.com/spacetelescope/WFC3Library), contains an example to perform this calculation iteratively over all UVIS and IR bandpasses and to compute 'total system throughput tables' for each mode." - ] - }, - { - "cell_type": "markdown", - "id": "548ec9aa", - "metadata": {}, - "source": [ - "First, we set up a bandpass based on our observation mode. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "3b24c5f6", - "metadata": {}, - "outputs": [], - "source": [ - "obsmode = 'wfc3, uvis1, f814w, aper#6.0, mjd#55008'\n", - "bp = stsyn.band(obsmode)" - ] - }, - { - "cell_type": "markdown", - "id": "6ac74915", - "metadata": {}, - "source": [ - "Then, we can find the unit response for the bandpass, which is the flux (in $\\text{erg } \\text{cm}^{-2} \\text{ s}^{-1} \\text{ Å}^{-1}$, aka FLAM) that produces 1 electron per second. For this calculation, we must pass the HST primary mirror area. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "47c807c9", - "metadata": {}, - "outputs": [], - "source": [ - "uresp = bp.unit_response(stsyn.conf.area)" - ] - }, - { - "cell_type": "markdown", - "id": "af7d302f", - "metadata": {}, - "source": [ - "Next, we convert the unit response to magnitudes in the ST and AB systems. For the AB conversion, we need the bandpass pivot wavelength." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "5729fe90", - "metadata": {}, - "outputs": [], - "source": [ - "st = -2.5 * np.log10(uresp.value) - 21.1 \n", - "\n", - "pivot = bp.pivot() # Pivot wavelength for ABmag conversion\n", - "ab = st - 5 * np.log10(pivot.value) + 18.6921" - ] - }, - { - "cell_type": "markdown", - "id": "c7850a3c", - "metadata": {}, - "source": [ - "Converting the unit response for the bandpass to the vegamag system requires us to generate a synthetic Observation, which consists of Vega's spectrum convolved with the bandpass." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "9df9b9ee", - "metadata": {}, - "outputs": [], - "source": [ - "obs = syn.Observation(vegaspec, bp, binset=bp.binset)\n", - "effstim = obs.effstim(flux_unit=su.FLAM) # Effective stimulus for Vega observation\n", - "ve = -2.5 * np.log10(uresp/effstim) # vegamag sensitivity value" - ] - }, - { - "cell_type": "markdown", - "id": "540cfe18", - "metadata": {}, - "source": [ - "Now, we can print our results." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "68ab0876", - "metadata": {}, - "outputs": [], - "source": [ - "print('Obsmode:', obsmode)\n", - "print('Pivot Wavelength: {:.1f}'.format(pivot))\n", - "print()\n", - "print('PHOTFLAM: {:.6}'.format(uresp))\n", - "print('STmag: {:.3f}'.format(st))\n", - "print('ABmag: {:.3f}'.format(ab))\n", - "print('VEGAMAG: {:.3f}'.format(ve))" - ] - }, - { - "cell_type": "markdown", - "id": "5c21fe77", - "metadata": {}, - "source": [ - "\n", - "### Example 1b: Compute an encircled energy correction\n", - "\n", - "As an addendum to the previous example, we can calculate the unit response for the same bandpass, but with a ~10 pixel aperture (0.4\"), and compute the encircled energy correction, in magnitudes, with respect to the infinite aperture. \n", - "\n", - "First, we set up the new bandpass for the smaller aperture size." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "b2c1fbfa", - "metadata": {}, - "outputs": [], - "source": [ - "obsmode_04 = 'wfc3, uvis1, f814w, aper#0.4, mjd#55008' # Set obsmode string\n", - "bp_04 = stsyn.band(obsmode_04)" - ] - }, - { - "cell_type": "markdown", - "id": "3394ca94", - "metadata": {}, - "source": [ - "Then, we find the unit response for the new bandpass." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "b628298a", - "metadata": {}, - "outputs": [], - "source": [ - "uresp_04 = bp_04.unit_response(stsyn.conf.area)" - ] - }, - { - "cell_type": "markdown", - "id": "152caecf", - "metadata": {}, - "source": [ - "Finally, we convert the unit response to a magnitude in the ST system, and find the difference between it and the corresponding value for the infinite aperture. This represents the encircled energy correction from 10 pixels to infinity." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "7cbdc0c2", - "metadata": {}, - "outputs": [], - "source": [ - "st_04 = -2.5 * np.log10(uresp_04.value) - 21.1\n", - "\n", - "st_eecorr = st - st_04\n", - "\n", - "print('EE Correction (10 pixels -> infinity): {:.3f}'.format(st_eecorr),'mag')" - ] - }, - { - "cell_type": "markdown", - "id": "ffb4f8bf", - "metadata": {}, - "source": [ - "\n", - "### Example 2: Renormalize a spectrum and predict its magnitude in another bandpass\n", - "**Renormalize a 2,500 K blackbody spectrum to have 1 count/sec in the Johnson V band, and compute the predicted AB magnitude through the F110W filter on WFC3/IR.**\n", - "\n", - "This example reproduces the methods described in section 3 of [WFC3 ISR 2014-16](https://www.stsci.edu/files/live/sites/www/files/home/hst/instrumentation/wfc3/documentation/instrument-science-reports-isrs/_documents/2014/WFC3-2014-16.pdf), but will automatically use the latest available spectra and throughput tables." - ] - }, - { - "cell_type": "markdown", - "id": "836fc659", - "metadata": {}, - "source": [ - "First, we define a Johnson V bandpass to which we normalize our spectrum." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "2cbc838e", - "metadata": {}, - "outputs": [], - "source": [ - "vband = stsyn.band('johnson, v')" - ] - }, - { - "cell_type": "markdown", - "id": "b26b07ca", - "metadata": {}, - "source": [ - "Then, we define the output bandpass for the calculation." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "59037e43", - "metadata": {}, - "outputs": [], - "source": [ - "obsmode = 'wfc3, ir, f110w'\n", - "bp = stsyn.band(obsmode)" - ] - }, - { - "cell_type": "markdown", - "id": "deafa6d9", - "metadata": {}, - "source": [ - "Next, we choose a 2500 K blackbody model, fit our spectrum to the model, and use the `normalize` method to normalize the spectrum to one count/sec in the V band." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "2f0f8f30", - "metadata": {}, - "outputs": [], - "source": [ - "model = syn.models.BlackBody1D(2500)\n", - "spec = syn.SourceSpectrum(model)\n", - "spec_norm = spec.normalize(1*u.ct, vband, area=stsyn.conf.area)" - ] - }, - { - "cell_type": "markdown", - "id": "1b0a59ac", - "metadata": {}, - "source": [ - "Finally, we generate a synthetic Observation, which consists of the normalized spectrum convolved with the bandpass, and print the predicted flux (in FLAM) and ABmag values for our Observation." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "04ae77f8", - "metadata": {}, - "outputs": [], - "source": [ - "obs = syn.Observation(spec_norm, bp)\n", - "\n", - "flux = obs.effstim(flux_unit=su.FLAM)\n", - "ab = obs.effstim(flux_unit=u.ABmag)\n", - "\n", - "print('Predicted flux: {:.4} for Obsmode = {}'.format(flux, obsmode))\n", - "print('Predicted ABmag: {:.3f} for Obsmode = {}'.format(ab, obsmode))" - ] - }, - { - "cell_type": "markdown", - "id": "b5805e2e", - "metadata": {}, - "source": [ - "\n", - "### Example 3: Find the photometric transformation between two bandpasses\n", - "**Find the color term for a 5,000 K blackbody between the Cousins-I and WFC3/UVIS1 F814W bandpasses in the ABmag system.**\n", - "\n", - "More examples may be found in the filter transformations notebook in the [WFC3 Library](https://github.com/spacetelescope/WFC3Library)." - ] - }, - { - "cell_type": "markdown", - "id": "19d55eac", - "metadata": {}, - "source": [ - "First, we set up two bandpasses based on our observation modes. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "c1b14d64", - "metadata": {}, - "outputs": [], - "source": [ - "obsmode1 = 'wfc3, uvis1, f814w'\n", - "obsmode2 = 'cousins, i'\n", - "\n", - "bp1 = stsyn.band(obsmode1)\n", - "bp2 = stsyn.band(obsmode2)" - ] - }, - { - "cell_type": "markdown", - "id": "72079ed0", - "metadata": {}, - "source": [ - "Then, we choose a 5000 K blackbody model and fit our spectrum to the model." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "2d16c712", - "metadata": {}, - "outputs": [], - "source": [ - "model = syn.models.BlackBody1D(5000.)\n", - "spec = syn.SourceSpectrum(model)" - ] - }, - { - "cell_type": "markdown", - "id": "98501f79", - "metadata": {}, - "source": [ - "Next, we generate two synthetic Observations, which consists of the blackbody spectrum convolved with the bandpass." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "d693ca97", - "metadata": {}, - "outputs": [], - "source": [ - "obs1 = syn.Observation(spec, bp1, binset=bp1.binset)\n", - "obs2 = syn.Observation(spec, bp2, binset=bp2.binset)" - ] - }, - { - "cell_type": "markdown", - "id": "564d8592", - "metadata": {}, - "source": [ - "Finally, we calculate the color term by finding the difference between the two effective stimuli in ABmag." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "0addd585", - "metadata": {}, - "outputs": [], - "source": [ - "stim1 = obs1.effstim(flux_unit=u.ABmag)\n", - "stim2 = obs2.effstim(flux_unit=u.ABmag)\n", - "\n", - "color = stim2 - stim1\n", - "\n", - "print('ABmag({}) - ABmag({}) = {:.4f}'.format(obsmode2, obsmode1, color))" - ] - }, - { - "cell_type": "markdown", - "id": "beedb731", - "metadata": {}, - "source": [ - "\n", - "### Example 4a: Find the UV color term across the two UVIS chips for different spectral types\n", - "**Calculate the UV color terms (in the STmag system) for a white dwarf spectrum and a G-type spectrum across the two UVIS chips with the F225W filter. Then, find the difference between these two terms to find the magnitude offset on UVIS2 for the G-type star.**\n", - "\n", - "This example reproduces the results from Figure 4 of [WFC3 ISR 2018-08](https://www.stsci.edu/files/live/sites/www/files/home/hst/instrumentation/wfc3/documentation/instrument-science-reports-isrs/_documents/2018/WFC3-2018-08.pdf).\n", - "\n", - "The spectra required to run this example, which are the latest relevant spectra from CALSPEC, are provided in the `example_spectra` sub-directory which was packaged with this notebook." - ] - }, - { - "cell_type": "markdown", - "id": "a88968e2", - "metadata": {}, - "source": [ - "First, we set up two bandpasses based on our observation modes, and define our area to be the HST primary mirror area." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "7d3aea32", - "metadata": {}, - "outputs": [], - "source": [ - "obsmode1 = 'wfc3, uvis1, f225w'\n", - "obsmode2 = 'wfc3, uvis2, f225w'\n", - "\n", - "bp1 = stsyn.band(obsmode1)\n", - "bp2 = stsyn.band(obsmode2)" - ] - }, - { - "cell_type": "markdown", - "id": "73dd029f", - "metadata": {}, - "source": [ - "Then, we define our spectra from the provided FITS files." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "d407ff54", - "metadata": {}, - "outputs": [], - "source": [ - "spec_wd = syn.SourceSpectrum.from_file('example_spectra/gd153_stiswfcnic_003.fits') # GD153 (white dwarf)\n", - "spec_g = syn.SourceSpectrum.from_file('example_spectra/p330e_stiswfcnic_003.fits') # P330E (G-type)" - ] - }, - { - "cell_type": "markdown", - "id": "392d4ed4", - "metadata": {}, - "source": [ - "Next, we generate four synthetic Observations, one for each spectrum in each bandpass. Ignore the warning messages." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "8912d342", - "metadata": {}, - "outputs": [], - "source": [ - "obs1_wd = syn.Observation(spec_wd, bp1, binset=bp1.binset, force='extrap')\n", - "obs2_wd = syn.Observation(spec_wd, bp2, binset=bp2.binset, force='extrap')\n", - "\n", - "obs1_g = syn.Observation(spec_g, bp1, binset=bp1.binset, force='extrap')\n", - "obs2_g = syn.Observation(spec_g, bp2, binset=bp1.binset, force='extrap')" - ] - }, - { - "cell_type": "markdown", - "id": "58e7043f", - "metadata": {}, - "source": [ - "Following this, we calculate the effective stimuli (in STmag) for these Observations, and find the difference between these values across the two chips for each spectral type." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "be12eb31", - "metadata": {}, - "outputs": [], - "source": [ - "stim1_wd = obs1_wd.effstim(flux_unit = u.STmag)\n", - "stim2_wd = obs2_wd.effstim(flux_unit = u.STmag)\n", - "\n", - "stim1_g = obs1_g.effstim(flux_unit = u.STmag)\n", - "stim2_g = obs2_g.effstim(flux_unit = u.STmag)\n", - "\n", - "dstim_wd = stim1_wd - stim2_wd\n", - "dstim_g = stim1_g - stim2_g" - ] - }, - { - "cell_type": "markdown", - "id": "a12d97c2", - "metadata": {}, - "source": [ - "Finally, we calculate the overall cross-chip color term for the G-type star by finding its offset from the white dwarf." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "a64b9b78", - "metadata": {}, - "outputs": [], - "source": [ - "print('Color Term (UVIS1 - UVIS2): {:.3f}'.format(dstim_g - dstim_wd))" - ] - }, - { - "cell_type": "markdown", - "id": "73d4706b", - "metadata": {}, - "source": [ - "\n", - "### Example 4b: Plot bandpasses and spectra\n", - "\n", - "**Create a plot with the bandpasses and spectra used in Example 4a.**\n", - "\n", - "**Note:** For the purposes of these plots, the spectra will be scaled to the amplitude of the bandpasses, which reflect the actual total system throughput as a function of wavelength. You will see that the throughput is different between the two chips.\n", - "\n", - "First, define a set of wavelengths and a minimum/maximum bound for our plot, based on the average wavelength and witdth of the bandpasses." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "c0817185", - "metadata": {}, - "outputs": [], - "source": [ - "avgwave = (bp1.avgwave().to(u.nm) + bp2.avgwave().to(u.nm))/2\n", - "width = (bp1.rectwidth().to(u.nm) + bp2.rectwidth().to(u.nm))/2\n", - "\n", - "left = max((avgwave - 1.5 * width).value, 1)\n", - "right = (avgwave + 1.5 * width).value\n", - "\n", - "wl = np.arange(left, right) * u.nm" - ] - }, - { - "cell_type": "markdown", - "id": "4c8c986e", - "metadata": {}, - "source": [ - "Next, scale the spectra to the (average) amplitude of the bandpasses." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "55ec62d9", - "metadata": {}, - "outputs": [], - "source": [ - "avg_max = (np.max(bp1(wl)) + np.max(bp2(wl))) / 2\n", - "scale_wd = avg_max / np.max(spec_wd(wl))\n", - "scale_g = avg_max / np.max(spec_g(wl))\n", - "\n", - "spec_wd_scale = spec_wd(wl) * scale_wd\n", - "spec_g_scale = spec_g(wl) * scale_g" - ] - }, - { - "cell_type": "markdown", - "id": "cbdbd534", - "metadata": {}, - "source": [ - "Then, plot the bandpasses and spectra." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "7fd87c5c", - "metadata": {}, - "outputs": [], - "source": [ - "plt.figure()\n", - "\n", - "plt.xlabel('Wavelength (nm)')\n", - "plt.ylabel('Throughput')\n", - "\n", - "plt.plot(wl, spec_wd_scale, ls=':', c='blue', label='White dwarf spectrum')\n", - "plt.plot(wl, spec_g_scale, ls=':', c='red', label='G-type spectrum')\n", - "plt.plot(wl, bp1(wl), ls='-', c='orange', label='UVIS 1 bandpass')\n", - "plt.plot(wl, bp2(wl), ls='-', c='purple', label='UVIS 2 bandpass')\n", - "\n", - "plt.legend(fontsize='small')\n", - "\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "id": "06a62d49", - "metadata": {}, - "source": [ - "\n", - "## 4. Conclusions\n", - "\n", - "Thank you for walking through this notebook. Now using WFC3 data, you should be more familiar with:\n", - "\n", - "- Specify WFC3 bandpasses in `stsynphot` and define spectra with `synphot`.\n", - "- Computing WFC3 zeropoint values and an encircled energy correction.\n", - "- Renormalizing a spectrum and predict its effective stimulus in another filter.\n", - "- Finding the photometric transformation between two bandpasses.\n", - "- Finding the UV color term across the two UVIS chips for different spectral types.\n", - "- Plotting bandpasses and spectra.\n", - "\n", - "#### Congratulations, you have completed the notebook!" - ] - }, - { - "cell_type": "markdown", - "id": "24d1a132", - "metadata": {}, - "source": [ - "\n", - "## Additional Resources\n", - "Below are some additional resources that may be helpful. Please send any questions through the [HST Helpdesk](https://stsci.service-now.com/hst).\n", - "\n", - "- [WFC3 Website](https://www.stsci.edu/hst/instrumentation/wfc3)\n", - "- [WFC3 Instrument Handbook](https://hst-docs.stsci.edu/wfc3ihb)\n", - "- [WFC3 Data Handbook](https://hst-docs.stsci.edu/wfc3dhb)\n", - " - see sections 9.5.2 for reference to this notebook\n", - " \n", - "\n", - "## About this Notebook\n", - "\n", - "**Authors:** Aidan Pidgeon, Jennifer Mack; WFC3 Instrument Team\n", - "\n", - "**Updated on:** 2021-09-14\n", - "\n", - "\n", - "## Citations\n", - "\n", - "If you use `numpy`, `astropy`, `synphot`, or `stsynphot` for published research, please cite the\n", - "authors. Follow these links for more information about citing the libraries below:\n", - "\n", - "* [Citing `numpy`](https://www.scipy.org/citing.html#numpy)\n", - "* [Citing `astropy`](https://www.astropy.org/acknowledging.html)\n", - "* [Citing `synphot`](https://synphot.readthedocs.io/en/latest/)\n", - "* [Citing `stsynphot`](https://stsynphot.readthedocs.io/en/latest/index.html)\n", - "\n", - "***\n", - "[Top of Page](#title)\n", - "\"Space " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "9dd3642f", - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.12" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -}