forked from odegeasslbc/Progressive-GAN-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
247 lines (187 loc) · 9.76 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
from tqdm import tqdm
import numpy as np
from PIL import Image
import argparse
import random
import torch
import torch.nn.functional as F
from torch import nn, optim
from torch.autograd import Variable, grad
from torch.utils.data import DataLoader
from torchvision import datasets, transforms, utils
from progan_modules import Generator, Discriminator
def accumulate(model1, model2, decay=0.999):
par1 = dict(model1.named_parameters())
par2 = dict(model2.named_parameters())
for k in par1.keys():
par1[k].data.mul_(decay).add_(1 - decay, par2[k].data)
def imagefolder_loader(path):
def loader(transform):
data = datasets.ImageFolder(path, transform=transform)
data_loader = DataLoader(data, shuffle=True, batch_size=batch_size,
num_workers=4)
return data_loader
return loader
def sample_data(dataloader, image_size=4):
transform = transforms.Compose([
transforms.Resize(image_size+int(image_size*0.2)+1),
transforms.RandomCrop(image_size),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
loader = dataloader(transform)
return loader
def train(generator, discriminator, init_step, loader, total_iter=600000):
step = init_step # can be 1 = 8, 2 = 16, 3 = 32, 4 = 64, 5 = 128, 6 = 128
data_loader = sample_data(loader, 4 * 2 ** step)
dataset = iter(data_loader)
#total_iter = 600000
total_iter_remain = total_iter - (total_iter//6)*(step-1)
pbar = tqdm(range(total_iter_remain))
disc_loss_val = 0
gen_loss_val = 0
grad_loss_val = 0
from datetime import datetime
import os
date_time = datetime.now()
post_fix = '%s_%s_%d_%d.txt'%(trial_name, date_time.date(), date_time.hour, date_time.minute)
log_folder = 'trial_%s_%s_%d_%d'%(trial_name, date_time.date(), date_time.hour, date_time.minute)
os.mkdir(log_folder)
os.mkdir(log_folder+'/checkpoint')
os.mkdir(log_folder+'/sample')
config_file_name = os.path.join(log_folder, 'train_config_'+post_fix)
config_file = open(config_file_name, 'w')
config_file.write(str(args))
config_file.close()
log_file_name = os.path.join(log_folder, 'train_log_'+post_fix)
log_file = open(log_file_name, 'w')
log_file.write('g,d,nll,onehot\n')
log_file.close()
from shutil import copy
copy('train.py', log_folder+'/train_%s.py'%post_fix)
copy('progan_modules.py', log_folder+'/model_%s.py'%post_fix)
alpha = 0
#one = torch.FloatTensor([1]).to(device)
one = torch.tensor(1, dtype=torch.float).to(device)
mone = one * -1
iteration = 0
for i in pbar:
discriminator.zero_grad()
alpha = min(1, (2/(total_iter//6)) * iteration)
if iteration > total_iter//6:
alpha = 0
iteration = 0
step += 1
if step > 6:
alpha = 1
step = 6
data_loader = sample_data(loader, 4 * 2 ** step)
dataset = iter(data_loader)
try:
real_image, label = next(dataset)
except (OSError, StopIteration):
dataset = iter(data_loader)
real_image, label = next(dataset)
iteration += 1
### 1. train Discriminator
b_size = real_image.size(0)
real_image = real_image.to(device)
label = label.to(device)
real_predict = discriminator(
real_image, step=step, alpha=alpha)
real_predict = real_predict.mean() \
- 0.001 * (real_predict ** 2).mean()
real_predict.backward(mone)
# sample input data: vector for Generator
gen_z = torch.randn(b_size, input_code_size).to(device)
fake_image = generator(gen_z, step=step, alpha=alpha)
fake_predict = discriminator(
fake_image.detach(), step=step, alpha=alpha)
fake_predict = fake_predict.mean()
fake_predict.backward(one)
### gradient penalty for D
eps = torch.rand(b_size, 1, 1, 1).to(device)
x_hat = eps * real_image.data + (1 - eps) * fake_image.detach().data
x_hat.requires_grad = True
hat_predict = discriminator(x_hat, step=step, alpha=alpha)
grad_x_hat = grad(
outputs=hat_predict.sum(), inputs=x_hat, create_graph=True)[0]
grad_penalty = ((grad_x_hat.view(grad_x_hat.size(0), -1)
.norm(2, dim=1) - 1)**2).mean()
grad_penalty = 10 * grad_penalty
grad_penalty.backward()
grad_loss_val += grad_penalty.item()
disc_loss_val += (real_predict - fake_predict).item()
d_optimizer.step()
### 2. train Generator
if (i + 1) % n_critic == 0:
generator.zero_grad()
discriminator.zero_grad()
predict = discriminator(fake_image, step=step, alpha=alpha)
loss = -predict.mean()
gen_loss_val += loss.item()
loss.backward()
g_optimizer.step()
accumulate(g_running, generator)
if (i + 1) % 1000 == 0 or i==0:
with torch.no_grad():
images = g_running(torch.randn(5 * 10, input_code_size).to(device), step=step, alpha=alpha).data.cpu()
utils.save_image(
images,
f'{log_folder}/sample/{str(i + 1).zfill(6)}.png',
nrow=10,
normalize=True,
range=(-1, 1))
if (i+1) % 10000 == 0 or i==0:
try:
torch.save(g_running.state_dict(), f'{log_folder}/checkpoint/{str(i + 1).zfill(6)}_g.model')
torch.save(discriminator.state_dict(), f'{log_folder}/checkpoint/{str(i + 1).zfill(6)}_d.model')
except:
pass
if (i+1)%500 == 0:
state_msg = (f'{i + 1}; G: {gen_loss_val/(500//n_critic):.3f}; D: {disc_loss_val/500:.3f};'
f' Grad: {grad_loss_val/500:.3f}; Alpha: {alpha:.3f}')
log_file = open(log_file_name, 'a+')
new_line = "%.5f,%.5f\n"%(gen_loss_val/(500//n_critic), disc_loss_val/500)
log_file.write(new_line)
log_file.close()
disc_loss_val = 0
gen_loss_val = 0
grad_loss_val = 0
print(state_msg)
#pbar.set_description(state_msg)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Progressive GAN, during training, the model will learn to generate images from a low resolution, then progressively getting high resolution ')
parser.add_argument('--path', type=str, help='path of specified dataset, should be a folder that has one or many sub image folders inside')
parser.add_argument('--trial_name', type=str, default="test1", help='a brief description of the training trial')
parser.add_argument('--gpu_id', type=int, default=0, help='0 is the first gpu, 1 is the second gpu, etc.')
parser.add_argument('--lr', type=float, default=0.001, help='learning rate, default is 1e-3, usually dont need to change it, you can try make it bigger, such as 2e-3')
parser.add_argument('--z_dim', type=int, default=128, help='the initial latent vector\'s dimension, can be smaller such as 64, if the dataset is not diverse')
parser.add_argument('--channel', type=int, default=128, help='determines how big the model is, smaller value means faster training, but less capacity of the model')
parser.add_argument('--batch_size', type=int, default=4, help='how many images to train together at one iteration')
parser.add_argument('--n_critic', type=int, default=1, help='train Dhow many times while train G 1 time')
parser.add_argument('--init_step', type=int, default=1, help='start from what resolution, 1 means 8x8 resolution, 2 means 16x16 resolution, ..., 6 means 256x256 resolution')
parser.add_argument('--total_iter', type=int, default=300000, help='how many iterations to train in total, the value is in assumption that init step is 1')
parser.add_argument('--pixel_norm', default=False, action="store_true", help='a normalization method inside the model, you can try use it or not depends on the dataset')
parser.add_argument('--tanh', default=False, action="store_true", help='an output non-linearity on the output of Generator, you can try use it or not depends on the dataset')
args = parser.parse_args()
print(str(args))
trial_name = args.trial_name
device = torch.device("cuda:%d"%(args.gpu_id))
input_code_size = args.z_dim
batch_size = args.batch_size
n_critic = args.n_critic
generator = Generator(in_channel=args.channel, input_code_dim=input_code_size, pixel_norm=args.pixel_norm, tanh=args.tanh).to(device)
discriminator = Discriminator(feat_dim=args.channel).to(device)
g_running = Generator(in_channel=args.channel, input_code_dim=input_code_size, pixel_norm=args.pixel_norm, tanh=args.tanh).to(device)
## you can directly load a pretrained model here
#generator.load_state_dict(torch.load('./tr checkpoint/150000_g.model'))
#g_running.load_state_dict(torch.load('checkpoint/150000_g.model'))
#discriminator.load_state_dict(torch.load('checkpoint/150000_d.model'))
g_running.train(False)
g_optimizer = optim.Adam(generator.parameters(), lr=args.lr, betas=(0.0, 0.99))
d_optimizer = optim.Adam(discriminator.parameters(), lr=args.lr, betas=(0.0, 0.99))
accumulate(g_running, generator, 0)
loader = imagefolder_loader(args.path)
train(generator, discriminator, args.init_step, loader, args.total_iter)