generated from sosiristseng/template-juliabook-matrix
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathci.jl
151 lines (135 loc) · 5.02 KB
/
ci.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
using Distributed
using Tables
using MarkdownTables
using SHA
using IJulia
@everywhere begin
ENV["GKSwstype"] = "100"
using Literate, Pkg, JSON
end
# Strip SVG output from a Jupyter notebook
@everywhere function strip_svg(ipynb)
@info "Stripping SVG in $(ipynb)"
nb = open(JSON.parse, ipynb, "r")
for cell in nb["cells"]
!haskey(cell, "outputs") && continue
for output in cell["outputs"]
!haskey(output, "data") && continue
datadict = output["data"]
if haskey(datadict, "image/png") || haskey(datadict, "image/jpeg")
delete!(datadict, "text/html")
delete!(datadict, "image/svg+xml")
end
end
end
write(ipynb, JSON.json(nb, 1))
return ipynb
end
# Remove cached notebook and sha files if there is no corresponding notebook
function clean_cache(cachedir)
for (root, dirs, files) in walkdir(cachedir)
for file in files
if endswith(file, ".ipynb") || endswith(file, ".sha")
fn = joinpath(joinpath(splitpath(root)[2:end]), splitext(file)[1])
nb = fn * ".ipynb"
lit = fn * ".jl"
if !isfile(nb) && !isfile(lit)
fullfn = joinpath(root, file)
@info "Notebook $(nb) or $(lit) not found. Removing $(fullfn)."
rm(fullfn)
end
end
end
end
end
"Recursively list Jupyter and Literate notebooks. Also process caching."
function list_notebooks(basedir, cachedir)
ipynbs = String[]
litnbs = String[]
for (root, dirs, files) in walkdir(basedir)
for file in files
if endswith(file, ".ipynb") || endswith(file, ".jl")
nb = joinpath(root, file)
shaval = read(nb, String) |> sha256 |> bytes2hex
@info "Notebook $(nb): hash=$(shaval)"
shafilename = joinpath(cachedir, root, splitext(file)[1] * ".sha")
if isfile(shafilename) && read(shafilename, String) == shaval
@info "Notebook $(nb) cache hits and will not be executed."
else
@info "Notebook $(nb) cache misses. Writing hash to $(shafilename)."
mkpath(dirname(shafilename))
write(shafilename, shaval)
if endswith(file, ".ipynb")
push!(ipynbs, nb)
elseif endswith(file, ".jl")
push!(litnbs, nb)
end
end
end
end
end
return (; ipynbs, litnbs)
end
# Run a Literate.jl notebook
@everywhere function run_literate(file, cachedir; rmsvg=true)
outpath = joinpath(abspath(pwd()), cachedir, dirname(file))
mkpath(outpath)
ipynb = Literate.notebook(file, outpath; mdstrings=true, execute=true)
rmsvg && strip_svg(ipynb)
return ipynb
end
function main(;
basedir=get(ENV, "DOCDIR", "docs"),
cachedir=get(ENV, "NBCACHE", ".cache"),
rmsvg=true)
mkpath(cachedir)
clean_cache(cachedir)
(; ipynbs, litnbs) = list_notebooks(basedir, cachedir)
if !isempty(litnbs)
# Execute literate notebooks in worker process(es)
ts_lit = pmap(litnbs; on_error=ex -> NaN) do nb
@elapsed run_literate(nb, cachedir; rmsvg)
end
rmprocs(workers()) # Remove worker processes to release some memory
# Debug notebooks one by one if there are errors
for (nb, t) in zip(litnbs, ts_lit)
if isnan(t)
println("Debugging notebook: ", nb)
try
withenv("JULIA_DEBUG" => "Literate") do
run_literate(nb, cachedir; rmsvg)
end
catch e
println(e)
end
end
end
any(isnan, ts_lit) && error("Please check literate notebook error(s).")
else
ts_lit = []
end
if !isempty(ipynbs)
# Install IJulia kernel
IJulia.installkernel("Julia", "--project=@.", "--heap-size-hint=4G")
# nbconvert command array
ntasks = parse(Int, get(ENV, "NBCONVERT_JOBS", "1"))
kernelname = "--ExecutePreprocessor.kernel_name=julia-1.$(VERSION.minor)"
execute = ifelse(get(ENV, "ALLOWERRORS", " ") == "true", "--execute --allow-errors", "--execute")
timeout = "--ExecutePreprocessor.timeout=" * get(ENV, "TIMEOUT", "-1")
# Run the nbconvert commands in parallel
ts_ipynb = asyncmap(ipynbs; ntasks) do nb
@elapsed begin
nbout = joinpath(abspath(pwd()), cachedir, nb)
cmd = `jupyter nbconvert --to notebook $(execute) $(timeout) $(kernelname) --output $(nbout) $(nb)`
run(cmd)
rmsvg && strip_svg(nbout)
end
end
else
ts_ipynb = []
end
# Print execution result
Tables.table([litnbs ts_lit; ipynbs ts_ipynb]; header=["Notebook", "Elapsed (s)"]) |> markdown_table(String) |> print
end
# Run code
main()