forked from Wanggcong/Spatial-Temporal-Re-identification
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgen_rerank_all_scores_mat.py
230 lines (193 loc) · 7.46 KB
/
gen_rerank_all_scores_mat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import scipy.io
import torch
import numpy as np
import time
import argparse
import os
import math
parser = argparse.ArgumentParser(description='evaluate')
parser.add_argument('--name',default='ft_ResNet50_market_pcb_r', type=str, help='0,1,2,3...or last')
parser.add_argument('--alpha', default=5, type=float, help='alpha')
parser.add_argument('--smooth', default=50, type=float, help='smooth')
opt = parser.parse_args()
name = opt.name
alpha=opt.alpha
smooth=opt.smooth
#######################################################################
# Evaluate
def evaluate(qf,ql,qc,qfr,gf,gl,gc,gfr,distribution):
query = qf
score = np.dot(gf,query)
# spatial temporal scores: qfr,gfr, qc, gc
# TODO
interval = 100
score_st = np.zeros(len(gc))
for i in range(len(gc)):
if qfr>gfr[i]:
diff = qfr-gfr[i]
hist_ = int(diff/interval)
pr = distribution[qc-1][gc[i]-1][hist_]
else:
diff = gfr[i]-qfr
hist_ = int(diff/interval)
pr = distribution[gc[i]-1][qc-1][hist_]
score_st[i] = pr
# ========================
score = 1/(1+np.exp(-alpha*score))*1/(1+2*np.exp(-alpha*score_st))
###############################################################################################
index = np.argsort(-score) #from large to small
query_index = np.argwhere(gl==ql)
camera_index = np.argwhere(gc==qc)
good_index = np.setdiff1d(query_index, camera_index, assume_unique=True)
junk_index1 = np.argwhere(gl==-1)
junk_index2 = np.intersect1d(query_index, camera_index)
junk_index = np.append(junk_index2, junk_index1) #.flatten())
CMC_tmp = compute_mAP(index, good_index, junk_index)
return CMC_tmp
def evaluate2(qf,ql,qc,qfr,gf,gl,gc,gfr,distribution):
query = qf
score = np.dot(gf,query)
# spatial temporal scores: qfr,gfr, qc, gc
# TODO
interval = 100
score_st = np.zeros(len(gc))
for i in range(len(gc)):
if qfr>gfr[i]:
diff = qfr-gfr[i]
hist_ = int(diff/interval)
# print('debug:',qc-1,gc[i]-1,hist_)
pr = distribution[qc-1][gc[i]-1][hist_]
else:
diff = gfr[i]-qfr
hist_ = int(diff/interval)
# print('debug:',qc-1,gc[i]-1,hist_)
pr = distribution[gc[i]-1][qc-1][hist_]
score_st[i] = pr
# ========================
score = 1/(1+np.exp(-alpha*score))*1/(1+2*np.exp(-alpha*score_st))
return score
def compute_mAP(index, good_index, junk_index):
ap = 0
cmc = torch.IntTensor(len(index)).zero_()
if good_index.size==0: # if empty
cmc[0] = -1
return ap,cmc
# remove junk_index
mask = np.in1d(index, junk_index, invert=True)
index = index[mask]
# find good_index index
ngood = len(good_index)
mask = np.in1d(index, good_index)
rows_good = np.argwhere(mask==True)
rows_good = rows_good.flatten()
cmc[rows_good[0]:] = 1
for i in range(ngood):
d_recall = 1.0/ngood
precision = (i+1)*1.0/(rows_good[i]+1)
if rows_good[i]!=0:
old_precision = i*1.0/rows_good[i]
else:
old_precision=1.0
ap = ap + d_recall*(old_precision + precision)/2
return ap, cmc
def gaussian_func(x, u, o=50):
if (o == 0):
print("In gaussian, o shouldn't equel to zero")
return 0
temp1 = 1.0 / (o * math.sqrt(2 * math.pi))
temp2 = -(math.pow(x - u, 2)) / (2 * math.pow(o, 2))
return temp1 * math.exp(temp2)
def gaussian_func2(x, u, o=50):
temp1 = 1.0 / (o * math.sqrt(2 * math.pi))
temp2 = -(np.power(x - u, 2)) / (2 * np.power(o, 2))
return temp1 * np.exp(temp2)
def gauss_smooth(arr):
hist_num = len(arr)
vect= np.zeros((hist_num,1))
for i in range(hist_num):
vect[i,0]=i
# gaussian_vect= gaussian_func2(vect,0,1)
gaussian_vect= gaussian_func2(vect,0,50)
matrix = np.zeros((hist_num,hist_num))
# matrix = np.eye(hist_num)
for i in range(hist_num):
for j in range(i,hist_num):
matrix[i][j]=gaussian_vect[j-i]
matrix = matrix+matrix.transpose()
for i in range(hist_num):
matrix[i][i]=matrix[i][i]/2
xxx = np.dot(matrix,arr)
return xxx
# faster gauss_smooth
def gauss_smooth2(arr,o):
hist_num = len(arr)
vect= np.zeros((hist_num,1))
for i in range(hist_num):
vect[i,0]=i
approximate_delta = 3*o # when x-u>approximate_delta, e.g., 6*o, the gaussian value is approximately equal to 0.
gaussian_vect= gaussian_func2(vect,0,o)
matrix = np.zeros((hist_num,hist_num))
for i in range(hist_num):
k=0
for j in range(i,hist_num):
if k>approximate_delta:
continue
matrix[i][j]=gaussian_vect[j-i]
k=k+1
matrix = matrix+matrix.transpose()
for i in range(hist_num):
matrix[i][i]=matrix[i][i]/2
xxx = np.dot(matrix,arr)
return xxx
######################################################################
result = scipy.io.loadmat('model/'+name+'/'+'pytorch_result.mat')
query_feature = result['query_f']
query_cam = result['query_cam'][0]
query_label = result['query_label'][0]
query_frames = result['query_frames'][0]
gallery_feature = result['gallery_f']
gallery_cam = result['gallery_cam'][0]
gallery_label = result['gallery_label'][0]
gallery_frames = result['gallery_frames'][0]
query_feature=query_feature.transpose()/np.power(np.sum(np.power(query_feature,2),axis=1),0.5)
query_feature=query_feature.transpose()
print('query_feature:',query_feature.shape)
gallery_feature=gallery_feature.transpose()/np.power(np.sum(np.power(gallery_feature,2),axis=1),0.5)
gallery_feature=gallery_feature.transpose()
print('gallery_feature:',gallery_feature.shape)
#############################################################
result2 = scipy.io.loadmat('model/'+name+'/'+'pytorch_result2.mat')
distribution = result2['distribution']
#############################################################
for i in range(0,8):
for j in range(0,8):
print("gauss "+str(i)+"->"+str(j))
# gauss_smooth(distribution[i][j])
distribution[i][j][:]=gauss_smooth2(distribution[i][j][:],smooth)
eps = 0.0000001
sum_ = np.sum(distribution,axis=2)
for i in range(8):
for j in range(8):
distribution[i][j][:]=distribution[i][j][:]/(sum_[i][j]+eps)
#############################################################
all_features = np.concatenate([query_feature,gallery_feature],axis=0)
all_labels = np.concatenate([query_label,gallery_label],axis=0)
all_cams = np.concatenate([query_cam,gallery_cam],axis=0)
all_frames = np.concatenate([query_frames,gallery_frames],axis=0)
all_scores = np.zeros((len(all_labels),len(all_labels)))
print('all_features shape:',all_features.shape)
print('all_labels shape:',all_labels.shape)
print('all_cams shape:',all_cams.shape)
print('all_frames shape:',all_frames.shape)
print('all_scores shape:',all_scores.shape)
CMC = torch.IntTensor(len(all_labels)).zero_()
ap = 0.0
for i in range(len(all_labels)):
scores_new = evaluate2(all_features[i],all_labels[i],all_cams[i],all_frames[i], all_features,all_labels,all_cams,all_frames,distribution)
print('scores_new shape:',scores_new.shape)
all_scores[i,:] = scores_new
print(i)
print('type(all_scores):',type(all_scores))
all_scores = {'all_scores':all_scores}
scipy.io.savemat('model/'+name+'/'+'all_scores'+'.mat',all_scores)
###############################################################################################