-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmesh_view.cc
563 lines (461 loc) · 16.2 KB
/
mesh_view.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
#include "noglut.h"
#include "mesh_view.h"
#include "scene.h"
#include "aggregate.h"
#include "boundingbox.h"
#include "viewer.h"
#include "triangle.h"
#include "quad.h"
#include "sphere.h"
#include "area_light.h"
#include "point_light.h"
extern "C" {
#include "trackball.h"
}
namespace Renzoku {
extern "C" {
void APIENTRY
glutWireSphere(GLdouble radius, GLint slices, GLint stacks);
void APIENTRY
glutSolidSphere(GLdouble radius, GLint slices, GLint stacks);
}
MeshView::MeshView(Scene *scene) : GLView(scene), height(512), width(512) {
display_mode = MeshDisplay::WIREFRAME;
is_draw_spatial_bounding_boxes = false;
is_draw_paths = false;
scene->set_mesh_view(this);
}
MeshView::MeshView(Scene *scene, int height, int width) : GLView(scene), height(height), width(width) {
display_mode = MeshDisplay::WIREFRAME;
is_draw_spatial_bounding_boxes = false;
is_draw_paths = false;
scene->set_mesh_view(this);
}
MeshView::~MeshView() {
}
void MeshView::init() {
BoundingBox box = scene->get_aggregate()->get_bounding_box();
Vec3 centroid = box.centroid();
Vec3 size = box.size();
eye = centroid + 2 * (box.v_max - centroid); // simulate a view from (1, 1, 1) to (0, 0, 0)
lookat = centroid;
up = Vec3(0, 1, 0);
fov = 60.0;
Camera *camera = scene->get_camera();
if (camera->get_near_plane() > 0) {
near_plane = camera->get_near_plane();
} else {
Float min_near_plane = size.min_component() * 0.05f; // for good depth resolution, the point light won't see anything nearer than 5% of the minimum bounding box size.
near_plane = std::max(min_near_plane, 0.05f * size.max_component());
}
if (camera->get_far_plane() > 0) {
far_plane = camera->get_far_plane();
} else {
far_plane = near_plane + 10 * size.max_component();
}
this->reset_camera();
tb_init_buttons(MOUSE_BUTTON_LEFT, MOUSE_BUTTON_MIDDLE, MOUSE_BUTTON_RIGHT);
}
void MeshView::reset_camera() {
// set camera with current eye and lookat.
// Trackball status is preserved as before hiding.
glViewport(0, 0, width, height);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(fov, width * 1.0 / height, near_plane, far_plane);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt(eye.x(), eye.y(), eye.z(),
lookat.x(), lookat.y(), lookat.z(),
up.x(), up.y(), up.z());
}
void MeshView::on_show() {
update_camera_from_scene();
//reset_camera();
}
void MeshView::on_hide() {
}
void MeshView::reshape(int width, int height) {
this->width = width;
this->height = height;
tb_reshape(width, height);
glViewport(0, 0, width, height);
}
/**
* FIXME: this violates LSP design principle.
*/
static void draw_shape(Shape *s, const Rgb &color) {
glColor3f(color.red(), color.green(), color.blue());
Quad *q = dynamic_cast<Quad *>(s); // can have overhead due to run-time type check
if (q) {
glBegin(GL_QUADS);
glVertex3f(q->p0.x(), q->p0.y(), q->p0.z());
glVertex3f(q->p1.x(), q->p1.y(), q->p1.z());
glVertex3f(q->p2.x(), q->p2.y(), q->p2.z());
glVertex3f(q->p3.x(), q->p3.y(), q->p3.z());
glEnd();
} else {
Triangle *t = dynamic_cast<Triangle *>(s);
if (t) {
glBegin(GL_TRIANGLES);
glVertex3f(t->p0.x(), t->p0.y(), t->p0.z());
glVertex3f(t->p1.x(), t->p1.y(), t->p1.z());
glVertex3f(t->p2.x(), t->p2.y(), t->p2.z());
glEnd();
} else {
Sphere *e = dynamic_cast<Sphere *>(s);
if (e) {
glPushMatrix();
glTranslatef(e->center.x(), e->center.y(), e->center.z());
glutSolidSphere(e->rad, 16, 16);
glPopMatrix();
} else {
// unknown shape
}
}
}
}
void MeshView::display() {
BoundingBox box = scene->get_aggregate()->get_bounding_box();
Vec3 centroid = box.centroid();
Vec3 size = box.size();
glClearColor(0.0, 0.0, 0.0, 1.0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
// ----- Trackball usage -------------------------------------------------------------------------
// Trackball allows rotation around the centroid of the scene. Therefore,
// we translate to the centroid, perform rotation (and zoom), and move back to original world coordinates.
// Then we can apply eye view transformation, and finally panning.
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
tb_apply_panning();
gluLookAt(eye.x(), eye.y(), eye.z(),
lookat.x(), lookat.y(), lookat.z(),
up.x(), up.y(), up.z());
glTranslatef(centroid.x(), centroid.y(), centroid.z());
tb_apply_rotation_zoom();
glTranslatef(-centroid.x(), -centroid.y(), -centroid.z());
// -----------------------------------------------------------------------------------------------
// draw axes at the center of the bounding box
glPushMatrix();
glTranslatef(centroid.x(), centroid.y(), centroid.z());
draw_axes(box.size().max_component());
glPopMatrix();
draw_bounding_box(&box);
// draw boxes from spatial partition data structure if requested
if (is_draw_spatial_bounding_boxes) {
for (int i = 0; i < boxes.size(); ++i)
draw_bounding_box(&boxes[i], DefaultRgb::green);
}
if (is_draw_paths) {
if (paths.size() > 0) {
MutablePath path(scene);
mtx_paths.lock();
path = paths[0];
mtx_paths.unlock();
draw_path(path, DefaultRgb::white);
}
}
if (display_mode == MeshDisplay::NONE) return;
glEnable(GL_DEPTH_TEST);
//glDisable(GL_CULL_FACE);
switch (display_mode) {
case MeshDisplay::WIREFRAME:
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
break;
case MeshDisplay::FILL:
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
break;
}
Surfaces& surfaces = *scene->get_surfaces();
for (int i = 0; i < surfaces.size(); ++i) {
Rgb color;
if (surfaces[i].is_light()) {
color = surfaces[i].get_area_light()->power();
} else if (surfaces[i].is_env_light()) {
color = DefaultRgb::white;
} else {
color = surfaces[i].get_material()->get_representative_color();
}
Shape *s = surfaces[i].get_shape();
draw_shape(s, color);
}
Lights& lights = *scene->get_lights();
for (int i = 0; i < lights.size(); ++i) {
if (lights[i]->get_light_type() == Light::AREA_LIGHT) continue;
if (lights[i]->get_light_type() == Light::POINT_LIGHT) {
PointLight *pl = (PointLight *)lights[i];
Rgb color = pl->power();
Vec3 pos = pl->org();
glColor3f(color.red(), color.green(), color.blue());
glPushMatrix();
glTranslatef(pos.x(), pos.y(), pos.z());
glutSolidSphere(8, 16, 16);
glPopMatrix();
}
}
}
/**
* Calculate eye and lookat after applying trackball transformation
*/
void MeshView::update_camera_from_trackball() {
GLdouble m[4*4];
BoundingBox box = scene->get_aggregate()->get_bounding_box();
Vec3 centroid = box.centroid();
Vec3 size = box.size();
// query the camera matrix (without panning) to solve for eye and lookat, and apply panning later
// simulate trackball transform to obtain the view matrix (without panning)
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glLoadIdentity();
gluLookAt(eye.x(), eye.y(), eye.z(),
lookat.x(), lookat.y(), lookat.z(),
up.x(), up.y(), up.z());
glTranslatef(centroid.x(), centroid.y(), centroid.z());
tb_apply_rotation_zoom();
glTranslatef(-centroid.x(), -centroid.y(), -centroid.z());
glGetDoublev(GL_MODELVIEW_MATRIX, m);
glPopMatrix();
// zoom is implemented in projection matrix, so UVN are unit by default.
Vec3 u(m[0], m[4], m[8]); //u.make_unit_vector();
Vec3 v(m[1], m[5], m[9]); //v.make_unit_vector();
Vec3 n(m[2], m[6], m[10]); //n.make_unit_vector();
Vec3 dot_eye(-m[12], -m[13], -m[14]);
eye = Vec3(u.x() * dot_eye.x() + v.x() * dot_eye.y() + n.x() * dot_eye.z(),
u.y() * dot_eye.x() + v.y() * dot_eye.y() + n.y() * dot_eye.z(),
u.z() * dot_eye.x() + v.z() * dot_eye.y() + n.z() * dot_eye.z());
lookat = eye - n * size.max_component();
up = v;
// pan
GLdouble pan[2];
tb_get_pan(pan);
eye += -pan[0] * u + -pan[1] * v;
lookat += -pan[0] * u + -pan[1] * v;
GLdouble zoom = tb_get_zoom();
fov = atan(tan(fov / 2 * M_PI / 180.0) / zoom) * 180.0 / M_PI * 2;
Camera *camera = scene->get_camera();
Size2 film_size = camera->get_film_size();
Float focal = Camera::focal_length_from_fov(fov, film_size.height);
cout << "Eye : " << eye << endl;
cout << "Lookat : " << lookat << endl;
cout << "Up : " << up << endl;
cout << "Near : " << near_plane << endl;
cout << "Far : " << far_plane << endl;
cout << "Zoom : " << zoom << endl;
cout << "FOV : " << fov << endl;
cout << "Focal : " << focal << endl;
cout << "Film (w x h) : " << film_size.width << " " << film_size.height << endl;
// after applying trackball transform, reset trackball to identity
reset_camera();
tb_reset();
}
void MeshView::update_camera_from_scene() {
Camera *camera = scene->get_camera();
eye = camera->get_eye();
lookat = camera->get_lookat();
up = camera->get_up();
fov = camera->get_vertical_fov();
// sync with OpenGL camera
reset_camera();
}
void MeshView::keyboard(unsigned char key, int x, int y) {
switch (key) {
case 't': // test if the trackball and current FOV calculation is consistent
update_camera_from_trackball();
viewer->redisplay();
break;
case ' ': // event from Viewer to change view
case 'c': // just update, no change view
{
// apply current camera settings to all views
// by changing the camera stored in Scene.
Camera *c = scene->get_camera()->clone();
update_camera_from_trackball();
c->set_perspective(eye, lookat, up, fov);
scene->set_camera(c);
viewer->reset_all_views();
break;
}
case 'w':
{
update_camera_from_trackball();
// move the eye forward 10% of the bounding box size
Float size = scene->get_aggregate()->get_bounding_box().size().max_component();
eye += unit_vector(lookat - eye) * size * 0.1f;
viewer->redisplay();
break;
}
case 's':
{
update_camera_from_trackball();
// move the eye backward 10% of the bounding box size
Float size = scene->get_aggregate()->get_bounding_box().size().max_component();
eye -= unit_vector(lookat - eye) * size * 0.1;
viewer->redisplay();
break;
}
case 'm':
display_mode = (MeshDisplay::Mode)((display_mode + 1) % MeshDisplay::NUM_DISPLAY_MODES);
viewer->redisplay();
break;
case 'b':
is_draw_spatial_bounding_boxes ^= 1;
viewer->redisplay();
break;
// TODO: add a hot key to change view to see the whole scene (original trackball view).
case 'd':
// default bounding view (for cases where camera of the scene is wrongly set)
BoundingBox box = scene->get_aggregate()->get_bounding_box();
Vec3 centroid = box.centroid();
Vec3 size = box.size();
eye = centroid + 2 * (box.v_max - centroid); // simulate a view from (1, 1, 1) to (0, 0, 0)
lookat = centroid;
up = Vec3(0, 1, 0);
fov = 60.0;
scene->get_camera()->set_perspective(eye, lookat, up, fov);
viewer->redisplay();
break;
}
}
void MeshView::mouse(MouseButton button, MouseState state, int x, int y) {
tb_mouse(button, state, x, y);
viewer->redisplay();
}
void MeshView::motion(int x, int y) {
tb_motion(x, y);
viewer->redisplay();
}
void MeshView::reset() {
}
void MeshView::draw_axes(float length) const {
glPushAttrib(GL_ALL_ATTRIB_BITS);
glDisable(GL_LIGHTING);
glLineWidth(3.0);
glBegin(GL_LINES);
// x-axis.
glColor3f(1.f, 0.f, 0.f);
glVertex3f(0.f, 0.f, 0.f );
glVertex3f(length, 0.f, 0.f);
// y-axis.
glColor3f(0.f, 1.f, 0.f);
glVertex3f(0.f, 0.f, 0.f);
glVertex3f(0.f, length, 0.f);
// z-axis.
glColor3f(0.f, 0.f, 1.f);
glVertex3f(0.f, 0.f, 0.f);
glVertex3f(0.f, 0.f, length);
glEnd();
glPopAttrib();
}
/**
* Draw a cube by lines from (0, 0, 0) to (1, 1, 1)
*/
void MeshView::draw_canonical_bounding_box() const {
glBegin(GL_LINES);
glVertex3f(0, 0, 0);
glVertex3f(1, 0, 0);
glVertex3f(0, 0, 0);
glVertex3f(0, 1, 0);
glVertex3f(0, 0, 0);
glVertex3f(0, 0, 1);
glVertex3f(1, 1, 0);
glVertex3f(0, 1, 0);
glVertex3f(1, 1, 0);
glVertex3f(1, 0, 0);
glVertex3f(1, 1, 0);
glVertex3f(1, 1, 1);
glVertex3f(1, 0, 1);
glVertex3f(0, 0, 1);
glVertex3f(1, 0, 1);
glVertex3f(1, 1, 1);
glVertex3f(1, 0, 1);
glVertex3f(1, 0, 0);
glVertex3f(0, 1, 1);
glVertex3f(1, 1, 1);
glVertex3f(0, 1, 1);
glVertex3f(0, 0, 1);
glVertex3f(0, 1, 1);
glVertex3f(0, 1, 0);
glEnd();
}
void MeshView::draw_bounding_box(BoundingBox *box, Rgb color) const {
glPushAttrib(GL_ALL_ATTRIB_BITS);
glDisable(GL_LIGHTING);
glLineWidth(1.0);
glColor4f(color.r, color.g, color.b, 1.0f);
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
Vec3 size = box->size();
glTranslatef(box->v_min.x(), box->v_min.y(), box->v_min.z());
glScalef(size.x(), size.y(), size.z());
draw_canonical_bounding_box();
glPopMatrix();
glPopAttrib();
}
void MeshView::set_bounding_boxes(BoundingBoxes &b) {
boxes.clear();
boxes.assign(b.begin(), b.end());
}
void MeshView::draw_path(const MutablePath &path, Rgb color) const {
glPushAttrib(GL_ALL_ATTRIB_BITS);
glDisable(GL_LIGHTING);
glLineWidth(1.0);
glColor4f(color.r, color.g, color.b, 1.0f);
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glBegin(GL_LINE_STRIP);
for (int k = 0; k < path.num_nodes; ++k) {
Vec3 p = path.nodes[k].dg.p;
glVertex3f(p.x(), p.y(), p.z());
}
glEnd();
glPopMatrix();
glPopAttrib();
}
void MeshView::set_path(const MutablePath &path) {
mtx_paths.lock();
paths.clear();
paths.push_back(path);
mtx_paths.unlock();
}
void MeshView::set_draw_paths(bool draw) {
is_draw_paths = draw;
}
// ----------------------------------------------------------------------------
// Some shape drawing functions from GLUT 3.7 source code.
// ----------------------------------------------------------------------------
// ----------------------------------------------------------------------------
// glut_shapes.c
// ----------------------------------------------------------------------------
static GLUquadricObj *quadObj;
#define QUAD_OBJ_INIT() { if(!quadObj) initQuadObj(); }
static void
initQuadObj(void)
{
quadObj = gluNewQuadric();
//if (!quadObj)
// __glutFatalError("out of memory.");
}
/* CENTRY */
void APIENTRY
glutWireSphere(GLdouble radius, GLint slices, GLint stacks)
{
QUAD_OBJ_INIT();
gluQuadricDrawStyle(quadObj, GLU_LINE);
gluQuadricNormals(quadObj, GLU_SMOOTH);
/* If we ever changed/used the texture or orientation state
of quadObj, we'd need to change it to the defaults here
with gluQuadricTexture and/or gluQuadricOrientation. */
gluSphere(quadObj, radius, slices, stacks);
}
void APIENTRY
glutSolidSphere(GLdouble radius, GLint slices, GLint stacks)
{
QUAD_OBJ_INIT();
gluQuadricDrawStyle(quadObj, GLU_FILL);
gluQuadricNormals(quadObj, GLU_SMOOTH);
/* If we ever changed/used the texture or orientation state
of quadObj, we'd need to change it to the defaults here
with gluQuadricTexture and/or gluQuadricOrientation. */
gluSphere(quadObj, radius, slices, stacks);
}
} // end namespace