forked from statOmics/MSqRob
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDESCRIPTION
148 lines (148 loc) · 4.25 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
Package: MSqRob
Type: Package
Title: Robust statistical inference for quantitative LC-MS proteomics
Authors@R: c(
person("Ludger", "Goeminne", role = c("aut"), email =
person("Kris", "Gevaert", role = c("ctb"), email =
person("Lieven", "Clement", role = c("aut", "cre"), email =
Version: 0.7.6
Date: 2018-11-23
Author: Ludger Goeminne [aut],
Kris Gevaert [ctb],
Lieven Clement [aut, cre]
Maintainer: Lieven Clement <[email protected]>
Depends:
R (>= 3.0.1),
lme4
Imports:
Biobase,
DT,
fdrtool,
graphics,
grDevices,
limma,
MASS,
Matrix,
methods,
MSnbase,
numDeriv,
openxlsx,
plyr,
preprocessCore,
shiny,
shinyjs,
shinythemes,
statmod,
svDialogs,
utils,
vsn,
miniUI,
htmltools,
mzR,
ProtGenerics,
BiocParallel,
snow,
httpuv,
xtable,
htmlwidgets,
colorspace,
RColorBrewer,
dichromat,
munsell,
labeling,
affyio,
zlibbioc,
doParallel,
gtable,
scales,
tibble,
lazyeval,
reshape2,
affy,
impute,
pcaMethods,
mzID,
MALDIquant,
ggplot2,
XML,
minqa,
nloptr,
magrittr,
yaml,
stringr,
stringi,
foreach,
iterators,
Rcpp,
BiocGenerics
Suggests:
LFQbench,
zoo,
knitr
biocViews: label-free proteomics, relative quantification, tandem mass spectrometry, peptide-based linear model
Description: The MSqRob package allows a user to do quantitative protein-level
statistical inference on LC-MS proteomics data. More specifically, our package
makes use of peptide-level input data, thus correcting for unbalancedness
and peptide-specific biases. As previously shown (Goeminne et al. (2015)),
this approach is both more sensitive and specific than summarizing peptide-
level input to protein-level values. Model estimates are stabilized by ridge
regression, empirical Bayes variance estimation and downweighing of outliers.
Currently, only label-free proteomics data types are supported. The MSqRob
Shiny App allows for an easy-to-use graphical user interface that requires
no programming skills. Interactive plots are outputted and results are
automatically exported to Excel. The authors kindly ask to make a reference
to (Goeminne et al. (2016) and Goeminne et al. (2017)) when making use of this package
in any kind of publication or presentation.
Ludger Goeminne, Andrea Argentini, Lennart Martens and Lieven Clement (2015).
Summarization vs Peptide-Based Models in Label-Free Quantitative Proteomics:
Performance, Pitfalls, and Data Analysis Guidelines.
Journal of Proteome Research 15(10), 3550-3562. When using MSqRob, please refer
to our published algorithm: Goeminne, L. J. E., Gevaert, K., and Clement, L.
(2016) Peptide-level Robust Ridge Regression Improves Estimation, Sensitivity,
and Specificity in Data-dependent Quantitative Label-free Shotgun Proteomics.
Molecular & Cellular Proteomics 15(2), pp 657-668. When using the MSqRob App,
please refer to: Goeminne, L. J. E., Gevaert, K. and Clement, L. (2017).
Experimental design and data-analysis in label-free quantitative LC/MS proteomics:
A tutorial with MSqRob. Journal of Proteomics (in press).
License: LGPL (>= 3)
LazyData: TRUE
URL: https://github.com/statOmics/MSqRob
BugReports: https://github.com/statOmics/MSqRob/issues
Collate:
'updateProgress.R'
'preprocess_hlpFunctions.R'
'preprocess_MaxQuant.R'
'protdata.R'
'MSnSet2protdata.R'
'addFactorInterations.R'
'addVarFromVar.R'
'countPeptides.R'
'df2protdata.R'
'dummyVars_MSqRob.R'
'fdrtool_subset.R'
'protLM.R'
'fit_model.R'
'getBetaVcovDf.R'
'squeezeVarRob.R'
'getBetaVcovDfList.R'
'makeContrast.R'
'preprocess_long.R'
'preprocess_wide.R'
'prot_p_adjust.R'
'prot_p_adjust_protwise.R'
'prot_signif.R'
'saves_loads_MSqRob.R'
'sechol.R'
'sigma.R'
'smallestUniqueGroups.R'
'squeezePars.R'
'testANOVA.R'
'testContrast.R'
'testProtLMContrast.R'
'test_contrast_adjust.R'
'test_contrast_stagewise.R'
VignetteBuilder: knitr
RoxygenNote: 5.0.1