From 039c4b600c21d4afe435ffd55429a2d96c144cde Mon Sep 17 00:00:00 2001 From: Ibrahim O Alabi <72909059+Ibrahim-Ola@users.noreply.github.com> Date: Wed, 21 Aug 2024 10:26:45 -0700 Subject: [PATCH] uploading neural nets tutorial (#29) * uploading neural nets tutorial * uploading utils * made the install quiet --- book/_toc.yml | 8 + .../NN_with_Pytorch/00_ML_refresher.ipynb | 168 ++ .../01_Neural_Networks_Basics.ipynb | 149 + .../NN_with_Pytorch/02_Pytorch_Basics.ipynb | 290 ++ .../03_Data_Download_And_Cleaning.ipynb | 191 ++ .../04_Building_And_Training_FFN.ipynb | 498 ++++ .../NN_with_Pytorch/data/clean_data.csv | 2470 +++++++++++++++++ .../NN_with_Pytorch/images/ML_flowchart.jpeg | Bin 0 -> 70321 bytes .../NN_with_Pytorch/images/feedforward.png | Bin 0 -> 38663 bytes .../NN_with_Pytorch/images/perceptron.png | Bin 0 -> 64947 bytes .../traditional_programming_flowchart.jpeg | Bin 0 -> 54836 bytes book/tutorials/NN_with_Pytorch/intro.md | 18 + book/tutorials/NN_with_Pytorch/utils.py | 88 + 13 files changed, 3880 insertions(+) create mode 100644 book/tutorials/NN_with_Pytorch/00_ML_refresher.ipynb create mode 100644 book/tutorials/NN_with_Pytorch/01_Neural_Networks_Basics.ipynb create mode 100644 book/tutorials/NN_with_Pytorch/02_Pytorch_Basics.ipynb create mode 100644 book/tutorials/NN_with_Pytorch/03_Data_Download_And_Cleaning.ipynb create mode 100644 book/tutorials/NN_with_Pytorch/04_Building_And_Training_FFN.ipynb create mode 100644 book/tutorials/NN_with_Pytorch/data/clean_data.csv create mode 100644 book/tutorials/NN_with_Pytorch/images/ML_flowchart.jpeg create mode 100644 book/tutorials/NN_with_Pytorch/images/feedforward.png create mode 100644 book/tutorials/NN_with_Pytorch/images/perceptron.png create mode 100644 book/tutorials/NN_with_Pytorch/images/traditional_programming_flowchart.jpeg create mode 100644 book/tutorials/NN_with_Pytorch/intro.md create mode 100644 book/tutorials/NN_with_Pytorch/utils.py diff --git a/book/_toc.yml b/book/_toc.yml index bd5d821..4ded3b8 100644 --- a/book/_toc.yml +++ b/book/_toc.yml @@ -54,6 +54,14 @@ parts: title: Albedo sections: - file: tutorials/albedo/aviris-ng-data + - file: tutorials/NN_with_Pytorch/intro + title: Neural Networks with Pytorch + sections: + - file: tutorials/NN_with_Pytorch/00_ML_refresher + - file: tutorials/NN_with_Pytorch/01_Neural_Networks_Basics + - file: tutorials/NN_with_Pytorch/02_Pytorch_Basics + - file: tutorials/NN_with_Pytorch/03_Data_Download_And_Cleaning + - file: tutorials/NN_with_Pytorch/04_Building_And_Training_FFN - caption: Projects chapters: - file: projects/index diff --git a/book/tutorials/NN_with_Pytorch/00_ML_refresher.ipynb b/book/tutorials/NN_with_Pytorch/00_ML_refresher.ipynb new file mode 100644 index 0000000..87b2b63 --- /dev/null +++ b/book/tutorials/NN_with_Pytorch/00_ML_refresher.ipynb @@ -0,0 +1,168 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Machine Learning Refresher (5 mins)\n", + "\n", + "Before we dive into neural networks, let's take a moment to understand the broader context in which they operate: Machine Learning (ML).\n", + "\n", + "## What is Machine Learning?\n", + "\n", + "Machine Learning (ML) is a field of artificial intelligence (AI) that focuses on developing algorithms or computer models using data. The goal is to use these “trained” computer models to make decisions. Unlike traditional programming, where we write explicit rules for every situation, ML models learn patterns from data to perform tasks. Here is a more general definition:\n", + "\n", + "```{epigraph}\n", + "Machine Learning is the field of study that gives computers the ability to learn without being explicitly programmed. \n", + "**— Arthur Samuel, 1959**\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Machine Learning Vs. Traditional Programming\n", + "\n", + "Machine Learning (ML) and traditional programming are two different paradigms used to solve problems and create intelligent systems. The primary difference lies in how they are instructed to solve a problem.\n", + "\n", + "## A Simple Task\n", + "\n", + "Suppose we want to build an intelligent system that identifies whether a given number is even or odd. This intelligent system can be represented mathematically as:\n", + "\n", + "$$\n", + "y=f(x)\n", + "$$\n", + "\n", + "Where:\n", + "\n", + "- $x \\to$ the number entered also called a feature.\n", + "- $y \\to$ the outcome we want to predict.\n", + "- $f \\to$ the model that gets the job done.\n", + "\n", + "\n", + "### Traditional Programming Approach\n", + "\n", + "In traditional programming, the programmer writes explicit rules (code) for the program to follow. The system follows these instructions exactly to produce a solution.\n", + "\n", + "```\n", + "def check_even_odd(number):\n", + " if number % 2 == 0:\n", + " return \"Even\"\n", + " else:\n", + " return \"Odd\"\n", + "\n", + "# Usage\n", + "result = check_even_odd(4) # Output: Even\n", + "```\n", + "\n", + "```{figure} ./images/traditional_programming_flowchart.jpeg\n", + "---\n", + "alt: A flowchart showing the traditional programming approach\n", + "width: 400px\n", + "---\n", + "Tradition Programming Flowchart\n", + "```\n", + "\n", + "### Machine Learning Approach\n", + "\n", + "In Machine Learning, instead of writing explicit instructions, we provide a model with data and let it learn the patterns. The model, after training, can then make predictions or decisions based on what it has learned. \n", + "\n", + "```{figure} ./images/ML_flowchart.jpeg\n", + "---\n", + "alt: A flowchart showing the machine learning process\n", + "width: 400px\n", + "name: ml-flow\n", + "---\n", + "Machine Learning Flowchart\n", + "```\n", + "\n", + "\n", + "```{important}\n", + "Machine Learning is useful when the function ($f$) cannot be explicitly programmed or when the relationship between the feature(s) and outcome is unknown.\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## How Do We Estimate $f$?\n", + "\n", + "We must think about ML **only** if it is suitable for our work flow! \n", + "\n", + "### Machine Learning Algorithms\n", + "\n", + "Machine learning algorithms can be categorized based on different criteria, each suited to different kinds of problems:\n", + "\n", + "- **Supervised Learning**: The most common type of ML algorithm, where the model is trained on labeled data. For example, given past snow data, we can train a model to predict future snow water equivalent. Supervised learning is typically divided into two main types:\n", + " * **Classification**: In classification tasks, the model predicts a discrete label or category. For example, a model might be trained to classify different types of snow conditions (e.g., powder, packed, ice) based on weather data.\n", + " * **Regression**: In regression tasks, the model predicts a continuous value. For instance, predicting snow density using weather data.\n", + "- **Unsupervised Learning**: Here, the model works with unlabeled data, finding patterns or groupings in the data without explicit instructions. Examples include clustering or anomaly detection For example, grouping SNOTEL sites based on similar snow accumulation trends or temperature profiles.\n", + "- **Reinforcement Learning**: A more advanced type of ML where the model learns by making decisions and receiving feedback (rewards or penalties). It's commonly used in robotics, game playing, and optimization problems.\n", + "\n", + "```{note}\n", + "Most Machine Learning techniques can be characterised as either *parametric* or *non-parametric*. \n", + "\n", + "- **Parametric:** The parametric approach simplifies the problem of estimating $f$ to a parameter estimation problem. The disadvantage is that we assume a particular shape of $f$ that may not match the true shape of $f$. A common parametric method is the Linear Regression.\n", + "\n", + "- **Non-parametric:** Non-parametric approaches do not assume any shape for $f$. Instead, they try to estimate $f$ that gets as close to the data points as possible. The disadvantage of non-parametric approaches is that they may require extensive training observations to estimate $f$ accurately. Common examples of non-parametric methods are the tree models, neural networks, etc.\n", + "```\n", + "\n", + "::::{dropdown} 🏋️ Exercise: Where Do Neural Networks Fit In in this Tutorial?\n", + "::::{tip}\n", + "We're predicting snow density - a continuous value.\n", + "::::\n", + "::::" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Machine Learning Workflow\n", + "\n", + "To wrap up our introduction to Machine Learning, here’s a typical workflow that you would follow when developing a machine learning model:\n", + "\n", + "1. **Problem Definition**\n", + " - Clearly define the problem you’re trying to solve. For example, predicting snow density from weather data.\n", + " \n", + "2. **Data Collection**\n", + " - Gather relevant data. In our case, we would collect data from SNOTEL sites, including snow depth, temperature, and precipitation measurements.\n", + "\n", + "3. **Data Preprocessing**\n", + " - Clean and preprocess the data to make it suitable for modeling. This might include handling missing values, normalizing data, or encoding categorical variables.\n", + " \n", + "4. **Feature Engineering**\n", + " - Select or create features (input variables) that will be used by the model to make predictions. For instance, we might use features like average temperature and total precipitation over a certain period.\n", + "\n", + "5. **Model Selection**\n", + " - Choose the type of model to use. For example, a neural network.\n", + "\n", + "6. **Model Training**\n", + " - Train the model using the training data. This involves feeding the data into the model and adjusting the model’s parameters to minimize prediction errors.\n", + "\n", + "7. **Model Evaluation**\n", + " - Evaluate the model’s performance using validation data. This helps ensure that the model generalizes well to unseen data.\n", + "\n", + "8. **Model Tuning**\n", + " - Fine-tune the model by adjusting hyperparameters or using techniques like cross-validation to improve performance.\n", + "\n", + "9. **Model Deployment**\n", + " - Deploy the model to a production environment where it can make real-time predictions.\n", + "\n", + "10. **Monitoring and Maintenance**\n", + " - Continuously monitor the model’s performance and update it as necessary to ensure it remains accurate and relevant.\n", + "\n", + "This workflow (same as {numref}`ml-flow`) provides a high-level overview of the steps involved in a typical machine learning project. In the rest of this tutorial, we'll be applying parts of this workflow to predict snow density using neural networks and PyTorch.\n" + ] + } + ], + "metadata": { + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/book/tutorials/NN_with_Pytorch/01_Neural_Networks_Basics.ipynb b/book/tutorials/NN_with_Pytorch/01_Neural_Networks_Basics.ipynb new file mode 100644 index 0000000..d38f9d1 --- /dev/null +++ b/book/tutorials/NN_with_Pytorch/01_Neural_Networks_Basics.ipynb @@ -0,0 +1,149 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Introduction to Neural Networks\n", + "\n", + "## What is a Neural Network?\n", + "\n", + "A neural network is a computational model that was inspired by the functionality of biological neurons. It consists of layers of interconnected units called **neurons**, which process input data to produce an output. Neural networks (NN) are a type of non-parametric method. Non-parametric approaches do not assume any shape for $f$. Instead, the try to estimate $f$ (using $\\hat{f}$) that gets as close to the data points as possible. \n", + "\n", + "```{important}\n", + "Neural networks are not models of the brain as there is no proven evidence that the brain operates the same way neural networks learn representations. However, some of the concepts were inspired by understanding the brain.\n", + "```\n", + "\n", + "### Basic Structure of a Neural Network\n", + "\n", + "Every NN consists of three distinct layers;\n", + "\n", + "- **Input Layer**: The layer that receives the input data (e.g., features like temperature and snow depth).\n", + "- **Hidden Layers**: Layers where the data is processed. Each layer extracts different features or patterns from the data.\n", + "- **Output Layer**: The final layer that produces the prediction or classification (e.g., predicted snow density).\n", + "\n", + "Neural networks can vary in complexity, from simple single-layer networks to deep networks with many hidden layers. Here is an image of a sample neural network:\n", + "\n", + "```{figure} ./images/feedforward.png\n", + "---\n", + "alt: A Feed-forward Neural Network\n", + "width: 400px\n", + "name: ffn\n", + "---\n", + "A Simple Feed-forward Neural Network\n", + "```\n", + "\n", + "\n", + "### A Perceptron or Single Neuron\n", + "\n", + "To understand the functioning of these layers, we begin by exploring the building blocks of neural networks; a single neuron or perceptron. Each layer in a NN consists of small individual units called neurons (usually represented with a circle). A neuron receives inputs from other neurons, performs some mathematical operations, and then produces an output. Each neuron in the input layer represents a feature. In essence, the number of neurons in the input layer equals the number of features. Each neuron in the input layer is connected to some or every neuron in the hidden layer. The number of neurons in the hidden layer is not fixed, it is problem dependent and it is often determined via hyperparameter optimization (more on this later). Every inter-neuron connection has an associated weight, these weights are what the neural network learns during the training process.\n", + "\n", + "```{figure} ./images/perceptron.png\n", + "---\n", + "alt: A Perceptron\n", + "width: 400px\n", + "name: perceptron\n", + "---\n", + "A Single Neuron\n", + "```\n", + "\n", + "#### How the perceptron works\n", + "\n", + "Consider a dataset $\\mathcal{D}_n = \\left\\lbrace (\\textbf{x}_1, y_1), (\\textbf{x}_2, y_2), \\cdots, (\\textbf{x}_n, y_n) \\right\\rbrace$ where $\\textbf{x}_i^\\top \\equiv ({x}_{i1}, {x}_{i2}, \\cdots, {x}_{ik})$ denotes the $k$-dimensional vector of features, and $y_i$ represents the corresponding outcome. Given a set of input fed into the network through the input layer, the output of a neuron in the hidden layer is\n", + "\n", + "$$\n", + " z = f(\\textbf{x}_i;\\textbf{w}) = g(w_0 + \\textbf{w}^\\top \\textbf{x}_i),\n", + "$$\n", + "\n", + "where $\\textbf{w} = (w_1, w_2, \\cdots, w_k)^\\top$ is a vector of weights and $w_0$ is the bias term associated with the neuron. The weights can be thought of as the slopes in a linear regression and the bias as the intercept. The function $g(\\cdot)$ is known as the activation function and it is used to introduce non-linearity into the network. There exists a number of activation functions in practice (see them [here](https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity)), the commonly used ones are:\n", + "\n", + "- **ReLU (Rectified Linear Unit)**: Outputs the input directly if positive, otherwise, it outputs zero. It’s simple and effective, making it the default choice for most hidden layers.\n", + "- **Sigmoid**: Squashes the input to a range between 0 and 1, often used in the output layer of a binary classification problem and in hidden layers.\n", + "- **Tanh**: Similar to Sigmoid but outputs between -1 and 1, often used in hidden layers." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from utils import plot_activations # Import the function to plot the activations\n", + "\n", + "plot_activations()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Common Neural Network Architectures\n", + "\n", + "- **Feedforward Networks**: Often used for structural data, these networks consist of layers of neurons where the data moves forward from the input to the output without cycles.\n", + "\n", + "- **Convolutional Neural Networks (CNNs)**: The gold standard for image analysis, including, image classification, object detection, and image segmentation. 1D CNN can also be used for sequence data, such as text and time series.\n", + "\n", + "- **Recurrent Neural Networks (RNNs)**: Well-suited for sequence data such as texts, time series, and even tasks like drawing generation. Variants include LSTM (Long Short-Term Memory) and GRU (Gated Recurrent Units) which address the vanishing gradient problem.\n", + "\n", + "- **Encoder-Decoders**: Commonly used for tasks like machine translation, where the input data is encoded into a context vector and then decoded into the target language or format.\n", + "\n", + "- **Generative Adversarial Networks (GANs)**: Used for generating realistic data, including 3D modeling for video games, animation, and generating high-quality images. GANs consist of two networks (a generator and a discriminator) that compete against each other.\n", + "\n", + "- **Graph Neural Networks (GNNs)**: These networks are designed to work with graph data structures, making them suitable for tasks like social network analysis, molecular structure analysis, and recommendation systems.\n", + "\n", + "- **Transformers**: A revolutionary architecture primarily used in NLP but increasingly in other areas like vision (Vision Transformers). Transformers rely on self-attention mechanisms to process input data in parallel, making them highly efficient for tasks like language modeling, translation, and more. Transformers are the backbone of models like OPenAI's GPT, Google's BERT, Google's Gemini, and others." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Training a Feedforward Neural Network\n", + "\n", + "Training a neural network involves adjusting the weights based on the errors made on the training data.\n", + "\n", + "### Forward Propagation\n", + "In forward propagation, the input data passes through the network, layer by layer, to produce an output. The output is then compared to the actual target using a **loss function**.\n", + "\n", + "### Loss Function\n", + "The loss function quantifies how far the network's predictions are from the actual targets. For regression tasks, a common loss function is Mean Squared Error (MSE). See others [here](https://pytorch.org/docs/stable/nn.html#loss-functions).\n", + "\n", + "### Backward Propagation and Gradient Descent\n", + "- **Backward Propagation**: Computes the gradient of the loss function with respect to each weight using the chain rule. This gradient indicates the direction to adjust the weights to minimize the loss.\n", + "- **Gradient Descent**: An optimization algorithm that adjusts the weights in the direction that minimizes the loss function. This process is repeated over many iterations to improve the model's accuracy. The algorithm is as follows:\n", + " 1. Initialize weights and biases with random numbers.\n", + " 2. Loop until convergence:\n", + " 1. Compute the gradient using backpropagation ($\\widehat{\\mathcal{L}}_n(\\textbf{w})$ is the loss function); $\\frac{\\partial \\widehat{\\mathcal{R}}_n(\\textbf{w})}{\\partial \\textbf{w}}$\n", + " 2. Updated weights; $\\textbf{w} \\leftarrow \\textbf{w} - \\eta \\frac{\\partial \\widehat{\\mathcal{R}}_n(\\textbf{w})}{\\partial \\textbf{w}}$\n", + " 3. Return the weights\n", + "\n", + "```{note}\n", + "In practice we do not go through the entire dataset before updating the weight as this might be computationally expensive. So, we update the weight in batches. This is called mini-batch gradient descent. When the batch size is 1, it is called stochastic gradient descent. Additionally, we often use optimizers to extend the ideas of gradient descent to improve the efficiency, stability, and convergence of the training process.\n", + "\n", + "You can think of an optimizer as gradient descent plus some additional optimization techniques that improve or modify the basic gradient descent process.\n", + "```\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.5" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/book/tutorials/NN_with_Pytorch/02_Pytorch_Basics.ipynb b/book/tutorials/NN_with_Pytorch/02_Pytorch_Basics.ipynb new file mode 100644 index 0000000..23e83c7 --- /dev/null +++ b/book/tutorials/NN_with_Pytorch/02_Pytorch_Basics.ipynb @@ -0,0 +1,290 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# PyTorch Basics\n", + "\n", + "## Introduction to PyTorch\n", + "\n", + "### What is PyTorch?\n", + "\n", + "[PyTorch](https://pytorch.org/get-started/locally/) is a popular open-source deep learning framework known for its flexibility and ease of use. It's widely adopted in both research and industry for tasks ranging from simple machine learning models to complex neural networks.\n", + "\n", + "### Why PyTorch?\n", + "\n", + "- Dynamic computation graph: PyTorch's ability to dynamically build the computation graph at runtime makes it intuitive and easy to debug.\n", + "- Strong community support and integration with Python: PyTorch is Pythonic and integrates well with the Python data science stack.\n", + "- GPU acceleration: PyTorch makes it easy to move tensors to and from GPUs (supports Apple's Metal and Nvidia GPUs), which is crucial for training large models efficiently.\n", + "\n", + "## Tensors in PyTorch\n", + "\n", + "### What is a Tensor?\n", + "\n", + "Tensors are the fundamental data structures in PyTorch, similar to NumPy arrays but with the added capability of being used on a GPU.\n", + "\n", + "### Creating Tensors" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%pip install -q torch torchvision torchaudio" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import torch\n", + "\n", + "# Creating a tensor from a list\n", + "tensor_a = torch.tensor([1.0, 2.0, 3.0])\n", + "print(tensor_a)\n", + "\n", + "# Creating a tensor with random values\n", + "tensor_b = torch.rand((2, 3)) # A 2x3 matrix of random numbers\n", + "print(tensor_b)\n", + "\n", + "# Creating a tensor with zeros\n", + "tensor_c = torch.zeros((3, 3)) # A 3x3 matrix of zeros\n", + "print(tensor_c)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Basic Tensor Operators" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Reshaping a tensor\n", + "tensor_reshaped = tensor_b.view(3, 2) # Reshape to 3x2\n", + "print(tensor_reshaped)\n", + "\n", + "# Tensor addition\n", + "tensor_sum = tensor_a + tensor_a\n", + "print(tensor_sum)\n", + "\n", + "# Indexing\n", + "print(tensor_a[1]) # Access the second element\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Moving a tensor to GPU\n", + "\n", + "# Check which device is available\n", + "available_device = (\n", + " \"cuda\"\n", + " if torch.cuda.is_available()\n", + " else \"mps\"\n", + " if torch.backends.mps.is_available()\n", + " else \"cpu\"\n", + ")\n", + "\n", + "print(f\"Available device: {available_device}\")\n", + "\n", + "tensor_a_gpu = tensor_a.to(available_device)\n", + "print(tensor_a_gpu)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Autograd: Automatic Differentiation\n", + "\n", + "- PyTorch’s autograd system automatically calculates gradients, which are essential for training neural networks.\n", + "- Every operation on tensors keeps track of the computation history, allowing PyTorch to backpropagate errors automatically." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Create a tensor with gradient tracking enabled\n", + "x = torch.tensor(2.0, requires_grad=True)\n", + "\n", + "# Perform a computation\n", + "y = x ** 2 + 2* x ** 3\n", + "\n", + "# Backpropagate to compute the gradient\n", + "y.backward()\n", + "\n", + "# Print the gradient\n", + "print(x.grad) # Should output 28.0, the derivative of x^2 + 2x^3 at x=2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "```{important}\n", + "This example shows how PyTorch automatically calculates the gradient of a tensor operation, which is essential for updating the weights during training.\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Dataset and DataLoaders\n", + "\n", + "### What is a Dataset in PyTorch?\n", + "\n", + "* Purpose: The `Dataset` class in PyTorch serves as an abstraction that allows you to manage, preprocess, and access your data in a consistent way.\n", + "\n", + "* Key Features:\n", + " - Handles how data is stored and accessed.\n", + " - Allows for custom data transformations and preprocessing.\n", + " - Integrates seamlessly with PyTorch’s `DataLoader` for efficient batching and shuffling.\n", + "\n", + "### What is a DataLoader in PyTorch?\n", + "\n", + "* Purpose: The `DataLoader` is an iterable that abstracts the complexity of handling data in batches, shuffling, and parallel loading.\n", + "\n", + "* Key Features:\n", + " - Efficiently loads data in mini-batches during training.\n", + " - Automatically shuffles data at the start of each epoch (if specified).\n", + " - Supports parallel data loading using multiple workers.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from torch.utils.data import Dataset\n", + "\n", + "class CustomDataset(Dataset):\n", + " def __init__(self, data, targets):\n", + " self.data = data\n", + " self.targets = targets\n", + "\n", + " def __len__(self):\n", + " # Return the total number of samples\n", + " return len(self.data)\n", + "\n", + " def __getitem__(self, idx):\n", + " # Retrieve the data sample and label at the specified index\n", + " sample = self.data[idx]\n", + " target = self.targets[idx]\n", + " return sample, target" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Explaining `__len__` and `__getitem__`" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* __len__: Returns the total number of samples in your dataset. PyTorch uses this method to know how many iterations to run during training.\n", + "* __getitem__: Retrieves a specific sample from the dataset using its index. This method returns the data and its corresponding label, which PyTorch uses during training to form mini-batches." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import torch\n", + "\n", + "# Generate random data: 6 samples, each with 2 features\n", + "torch.manual_seed(0) # For reproducibility\n", + "features = torch.rand(6, 2)\n", + "\n", + "# Generate random target values (e.g., for a regression problem)\n", + "targets = torch.rand(6, 1)\n", + "\n", + "print(f\"Features:\\n{features}\")\n", + "print(f\"\\nTarget:\\n{targets}\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from torch.utils.data import DataLoader\n", + "\n", + "# Create an instance of the custom dataset\n", + "dataset = CustomDataset(data=features, targets=targets)\n", + "\n", + "# Create a DataLoader\n", + "data_loader = DataLoader(dataset, batch_size=2, shuffle=True)\n", + "\n", + "# Example of iterating through the DataLoader\n", + "for idx, (batch_data, batch_labels) in enumerate(data_loader):\n", + " print(f\"Batch {idx+1}:\\n========\")\n", + " print(f\"Data:\\n{batch_data}\")\n", + " print(f\"Targets:\\n{batch_labels}\\n\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* `shuffle=True` ensures that the data is shuffled at the beginning of each epoch, which helps prevent the model from learning patterns based on the order of the data." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "::::{dropdown} 🏋️ Exercise: What if we set `shuffle` to `False` and `batch_size` to 3?\n", + "::::{tip}\n", + "Check the Sample Size.\n", + "::::\n", + "::::" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.5" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/book/tutorials/NN_with_Pytorch/03_Data_Download_And_Cleaning.ipynb b/book/tutorials/NN_with_Pytorch/03_Data_Download_And_Cleaning.ipynb new file mode 100644 index 0000000..4225f33 --- /dev/null +++ b/book/tutorials/NN_with_Pytorch/03_Data_Download_And_Cleaning.ipynb @@ -0,0 +1,191 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Data Download and Cleaning\n", + "\n", + "We will download SNOTEL data set using the [metloom](https://metloom.readthedocs.io/en/latest/installation.html)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Download Data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%pip install -q metloom " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from datetime import datetime\n", + "from metloom.pointdata import SnotelPointData\n", + "\n", + "ALLOWED_VARIABLES = [\n", + " SnotelPointData.ALLOWED_VARIABLES.SWE,\n", + " SnotelPointData.ALLOWED_VARIABLES.TEMPAVG,\n", + " SnotelPointData.ALLOWED_VARIABLES.SNOWDEPTH,\n", + " SnotelPointData.ALLOWED_VARIABLES.PRECIPITATION,\n", + "]\n", + "\n", + "# You can get triplets from: https://wcc.sc.egov.usda.gov/nwcc/yearcount?network=sntl&state=&counttype=statelist\n", + "\n", + "snotel_point = SnotelPointData(station_id=\"502:WA:SNTL\", name=\"Green Lake\")\n", + "data = snotel_point.get_daily_data(\n", + " start_date=datetime(*(2010, 1, 1)),\n", + " end_date=datetime(*(2023, 1, 1)),\n", + " variables=ALLOWED_VARIABLES,\n", + " )\n", + "\n", + "data.info()\n", + "data.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "\n", + "for_plotting=data.reset_index()\n", + "\n", + "units={\n", + " \"SWE\": \"in\",\n", + " \"SNOWDEPTH\": \"in\",\n", + " \"AVG AIR TEMP\": \"degF\",\n", + " \"PRECIPITATION\": \"in\"\n", + "}\n", + "\n", + "variables_to_plot = [\n", + " \"SWE\", \"SNOWDEPTH\", \"AVG AIR TEMP\", \"PRECIPITATION\"\n", + "]\n", + "\n", + "plt.figure(figsize=(12, 8))\n", + "\n", + "for variable in variables_to_plot:\n", + " plt.subplot(2, 2, variables_to_plot.index(variable) + 1)\n", + " plt.plot(for_plotting[\"datetime\"], for_plotting[variable], label=variable)\n", + " plt.ylabel(f\"{variable} ({units[variable]})\", fontsize=14)\n", + " plt.xlabel(\"Date\", fontsize=14)\n", + "\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "for_plotting.isnull().sum() # Check for missing values" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Some Background\n", + "\n", + "At a given point, snow depth ($h_s$) is related to Snow Water Equivalent (SWE) by the local bulk density ($\\rho_b$):\n", + "\n", + "$$\n", + "\\text{SWE} = h_s \\frac{\\rho_b}{\\rho_w}\n", + "$$\n", + "\n", + "where depth is measured in centimeters, density in grams per centimeters cubed, $\\rho_w$ is the density of water (1 g cm $^{-3}$), and SWE is measured in centimeters of water. As such,\n", + "\n", + "$$\n", + "\\text{SWE} = h_s \\times \\frac{\\rho_b}{1}\n", + "$$\n", + "\n", + "$$\n", + "\\rho_b = \\frac{\\text{SWE}}{h_s}\n", + "$$" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "clean_df=(\n", + " for_plotting\n", + " .assign(\n", + " swe=lambda x: x.SWE.map(lambda y: y*2.54 if y is not None else None),\n", + " snowdepth=lambda x: x.SNOWDEPTH.map(lambda y: y*2.54 if y is not None else None),\n", + " precipitation=lambda x: x.PRECIPITATION.map(lambda y: y*2.54 if y is not None else None),\n", + " tempavg=lambda x: x['AVG AIR TEMP'].map(lambda y: (y-32)*5/9 if y is not None else None)\n", + " )\n", + " .set_index('datetime')\n", + " .assign(\n", + " precip_7_days_avg=lambda x: x.precipitation.shift().rolling(window=\"7D\", min_periods=7).mean(),\n", + " tempavg_7_days_avg=lambda x: x.tempavg.shift().rolling(window=\"7D\", min_periods=7).mean(),\n", + " )\n", + " .filter([\"datetime\", \"swe\", \"snowdepth\", \"tempavg_7_days_avg\", \"precip_7_days_avg\"])\n", + " .dropna()\n", + " .query(\n", + " \"snowdepth != 0 and swe != 0 and \"\n", + " \"snowdepth > 5 and swe > 3\"\n", + " )\n", + " .assign(snowdensity=lambda x: x.swe / x.snowdepth)\n", + ")\n", + "\n", + "clean_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# let's store data for later use\n", + "\n", + "import os\n", + "\n", + "os.makedirs(\"data\", exist_ok=True)\n", + "clean_df.to_csv(\"data/clean_data.csv\", index=False)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.5" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/book/tutorials/NN_with_Pytorch/04_Building_And_Training_FFN.ipynb b/book/tutorials/NN_with_Pytorch/04_Building_And_Training_FFN.ipynb new file mode 100644 index 0000000..dae2a96 --- /dev/null +++ b/book/tutorials/NN_with_Pytorch/04_Building_And_Training_FFN.ipynb @@ -0,0 +1,498 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Building and Training a Feed Forward Neural Network in PyTorch\n", + "\n", + "In this notebook, we’ll build a simple neural network using PyTorch, train it on the SNOTEL dataset, and evaluate its performance. This hands-on exercise will reinforce our understanding of the PyTorch framework and the steps involved in building and training neural networks on real-world data." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Load Libraries\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%pip install -q torch torchvision torchaudio" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "from sklearn.preprocessing import StandardScaler\n", + "from sklearn.model_selection import train_test_split\n", + "\n", + "\n", + "import torch\n", + "import torch.nn as nn\n", + "from torch.utils.data import Dataset\n", + "from torch.utils.data import DataLoader\n", + "\n", + "available_device = (\n", + " \"cuda\"\n", + " if torch.cuda.is_available()\n", + " else \"mps\"\n", + " if torch.backends.mps.is_available()\n", + " else \"cpu\"\n", + ")\n", + "\n", + "print(f\"Available device: {available_device}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Preparing the Dataset\n", + "\n", + "### Step 1: Load Dataset\n", + "\n", + "We'll start by loading the SNOTEL dataset from a CSV file." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "snotel_data=pd.read_csv(\"data/clean_data.csv\")\n", + "snotel_data.info()\n", + "snotel_data.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Step 2: Data Split\n", + "\n", + "We’ll split the data into training, validation, and testing sets. Typically, a common split might be 70% training, 15% validation, and 15% testing." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "features = snotel_data.drop('snowdensity', axis=1).values\n", + "targets = snotel_data['snowdensity'].values\n", + "\n", + "# Split the dataset into training and temp sets (85% train, 15% temp)\n", + "features_train, features_temp, targets_train, targets_temp = train_test_split(\n", + " features, targets, test_size=0.3, random_state=0\n", + ")\n", + "\n", + "# Further split the temp set into validation and test sets (15% each)\n", + "features_val, features_test, targets_val, targets_test = train_test_split(\n", + " features_temp, targets_temp, test_size=0.5, random_state=0\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Step 3: Preprocess Data\n", + "\n", + "Now that we've split the data, we can apply scaling. The scaler should be fit on the training data and then used to transform the training, validation, and test sets." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "scaler = StandardScaler()\n", + "\n", + "scaler.fit(features_train)\n", + "\n", + "# Transform the training, validation, and test sets\n", + "features_train = scaler.transform(features_train)\n", + "features_val = scaler.transform(features_val)\n", + "features_test = scaler.transform(features_test)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Step 4: Creating Custom Datasets\n", + "\n", + "Next, we define custom `Dataset` classes for each of the three sets: training, validation, and testing." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "class SNOTELDataset(Dataset):\n", + " def __init__(self, data, targets):\n", + " self.data = torch.tensor(data, dtype=torch.float32)\n", + " self.targets = torch.tensor(targets, dtype=torch.float32).view(-1, 1)\n", + "\n", + " def __len__(self):\n", + " return len(self.data)\n", + "\n", + " def __getitem__(self, idx):\n", + " sample = self.data[idx]\n", + " target = self.targets[idx]\n", + " return sample, target\n", + "\n", + "# Create instances of the custom datasets for training, validation, and testing sets\n", + "train_dataset = SNOTELDataset(data=features_train, targets=targets_train)\n", + "val_dataset = SNOTELDataset(data=features_val, targets=targets_val)\n", + "test_dataset = SNOTELDataset(data=features_test, targets=targets_test)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Step 5: Using DataLoader\n", + "\n", + "Now, we use `DataLoader` to manage our data in mini-batches during training, validation, and testing." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Create DataLoaders for training, validation, and testing sets\n", + "train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)\n", + "val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False)\n", + "test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Defining the Neural Network\n", + "\n", + "We define a simple feedforward neural network using `torch.nn.Module`." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "class SNOTELNN(nn.Module):\n", + " def __init__(self, input_size, hidden_size, output_size):\n", + " super(SNOTELNN, self).__init__() # super class to inherit from nn.Module\n", + " # Define the layers\n", + " self.fc1 = nn.Linear(input_size, hidden_size) # Fully connected layer 1\n", + " self.relu = nn.ReLU() # ReLU activation function\n", + " self.fc2 = nn.Linear(hidden_size, output_size) # Fully connected layer 2\n", + " \n", + " def forward(self, x): # x is the batch of input\n", + " # Define the forward pass\n", + " out = self.fc1(x) # Pass input through first layer\n", + " out = self.relu(out) # Apply ReLU activation\n", + " out = self.fc2(out) # Pass through second layer to get output\n", + " return out\n", + "\n", + "# Instantiate the model\n", + "# Instantiate the model and move it to the device (GPU or CPU)\n", + "model = SNOTELNN(input_size=features_train.shape[1], hidden_size=128, output_size=1).to(available_device)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `forward` method defines how the input data flows through the network layers. It specifies the sequence of operations that the data undergoes as it moves from the input layer to the output layer. This method is automatically called when you pass data through the model (e.g., `outputs = model(inputs)`)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Setting the Loss Function and Optimizer\n", + "\n", + "For this example, we’ll use Mean Squared Error Loss since we’re dealing with a regression problem. We’ll use the Adam optimizer, which is a good default choice due to its adaptive learning rates." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "criterion = nn.MSELoss()\n", + "optimizer = torch.optim.Adam(model.parameters(), lr=0.0001)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Training the Network\n", + "\n", + "We now write the training loop, which includes zeroing the gradients, performing the forward pass, computing the loss, backpropagating, and updating the model parameters. We will also validate the model on the validation set after each epoch.\n", + "\n", + "```{note}\n", + "An **Epoch** refers to one complete pass through the entire training dataset. During each epoch, the model sees every example in the dataset once.\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "num_epochs = 5\n", + "\n", + "# Lists to store the training and validation losses\n", + "train_losses = []\n", + "val_losses = []\n", + "\n", + "for epoch in range(num_epochs):\n", + " # Training phase\n", + " model.train()\n", + " train_loss = 0.0 # Initialize cumulative training loss\n", + " \n", + " for inputs, labels in train_loader:\n", + " # Move data to the appropriate device\n", + " inputs, labels = inputs.to(available_device), labels.to(available_device)\n", + " \n", + " # Zero the gradients from the previous iteration\n", + " optimizer.zero_grad()\n", + " \n", + " # Perform forward pass\n", + " outputs = model(inputs)\n", + " \n", + " # Compute the loss\n", + " loss = criterion(outputs, labels)\n", + " \n", + " # Perform backward pass (compute gradients)\n", + " loss.backward()\n", + " \n", + " # Update the model parameters\n", + " optimizer.step()\n", + " \n", + " # Accumulate training loss\n", + " train_loss += loss.item()\n", + " \n", + " # Average training loss\n", + " train_loss /= len(train_loader)\n", + " train_losses.append(train_loss) # Store the training loss for this epoch\n", + " \n", + " # Validation phase\n", + " model.eval() # Set model to evaluation mode\n", + " val_loss = 0.0\n", + " \n", + " with torch.no_grad():\n", + " for inputs, labels in val_loader:\n", + " inputs, labels = inputs.to(available_device), labels.to(available_device) # Move to device\n", + " outputs = model(inputs)\n", + " loss = criterion(outputs, labels)\n", + " val_loss += loss.item()\n", + " \n", + " # Average validation loss\n", + " val_loss /= len(val_loader)\n", + " val_losses.append(val_loss) # Store the validation loss for this epoch\n", + " \n", + " print(f'Epoch [{epoch+1}/{num_epochs}], Training Loss: {train_loss:.4f}, Validation Loss: {val_loss:.4f}')\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Plotting the training and validation losses\n", + "plt.figure(figsize=(10, 5))\n", + "plt.plot(range(1, num_epochs + 1), train_losses, label='Training Loss')\n", + "plt.plot(range(1, num_epochs + 1), val_losses, label='Validation Loss')\n", + "plt.xlabel('Epoch')\n", + "plt.ylabel('Loss')\n", + "plt.title('Training and Validation Loss Over Epochs')\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Testing the Model" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Evaluate the model on the test set and collect predictions\n", + "model.eval() # Set the model to evaluation mode\n", + "test_loss = 0.0 # Initialize cumulative test loss\n", + "all_preds = []\n", + "all_labels = []\n", + "\n", + "with torch.no_grad(): # Disable gradient computation for inference\n", + " for inputs, labels in test_loader:\n", + " # Move data to the appropriate device\n", + " inputs, labels = inputs.to(available_device), labels.to(available_device)\n", + " \n", + " # Perform forward pass\n", + " outputs = model(inputs)\n", + " \n", + " # Compute the loss\n", + " loss = criterion(outputs, labels)\n", + " \n", + " # Accumulate test loss\n", + " test_loss += loss.item()\n", + " \n", + " # Store the predictions and the corresponding labels\n", + " all_preds.extend(outputs.cpu().numpy())\n", + " all_labels.extend(labels.cpu().numpy())\n", + "\n", + "# Calculate the average test loss\n", + "test_loss /= len(test_loader)\n", + "print(f'Test Loss: {test_loss:.4f}')\n", + "\n", + "# Convert lists to numpy arrays for plotting\n", + "all_preds = np.array(all_preds)\n", + "all_labels = np.array(all_labels)\n", + "\n", + "# Plot observed vs predicted\n", + "plt.figure(figsize=(8, 8))\n", + "plt.scatter(all_labels, all_preds, alpha=0.7)\n", + "plt.xlabel('Observed (Actual) Values')\n", + "plt.ylabel('Predicted Values')\n", + "plt.title('Observed vs. Predicted Values')\n", + "plt.grid(True)\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Saving the Model\n", + "\n", + "Saving your trained model is an essential part of any machine learning project. It allows you to reuse the model for predictions, further training, or sharing with others without having to retrain it from scratch. In PyTorch, saving and loading models is straightforward and can be done using the `torch.save` and `torch.load` functions. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Save the model's state dictionary\n", + "torch.save(model.state_dict(), 'snotel_nn_model.pth')\n", + "\n", + "\n", + "# Initialize the model architecture\n", + "model = SNOTELNN(input_size=features_train.shape[1], hidden_size=128, output_size=1)\n", + "\n", + "# Load the model's state dictionary\n", + "model.load_state_dict(torch.load('snotel_nn_model.pth', weights_only=True))\n", + "\n", + "# Set the model to evaluation mode before inference\n", + "model.eval()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Hyperparameter Tuning\n", + "\n", + "Hyperparameter tuning is a critical step in building machine learning models. Unlike model parameters (like weights and biases), which are learned from the data during training, hyperparameters are the settings you choose before the training process begins. These include:\n", + "\n", + "- **Learning Rate**: Controls how much to adjust the model’s weights with respect to the loss gradient.\n", + "- **Batch Size**: Determines the number of training examples utilized in one iteration.\n", + "- **Number of Hidden Layers and Neurons**: Specifies the architecture of the neural network.\n", + "- **Optimizer**: The algorithm used to update model weights based on the computed gradients (e.g., Adam, SGD).\n", + "\n", + "\n", + "Tuning these hyperparameters can significantly affect the performance of your model. However, finding the optimal set of hyperparameters can be a challenging and time-consuming process, often requiring experimentation.\n", + "\n", + "### Manual vs. Automated Tuning\n", + "\n", + "- **Manual Tuning**: Involves adjusting hyperparameters based on intuition, experience, or trial and error. While straightforward, this approach can be inefficient and might not always yield the best results.\n", + "- **Automated Tuning**: Tools like **Optuna** can help automate the search for the best hyperparameters. These tools explore the hyperparameter space more systematically and can save a lot of time compared to manual tuning. Sample PyTorch hyperparameter tuning for Optuna can be found [here](https://github.com/optuna/optuna-examples/tree/main/pytorch).\n", + "\n", + "### Further Reading and Tools\n", + "\n", + "Since hyperparameter tuning is a vast topic and we have limited time, I recommend exploring the following resources and tools for a deeper dive\n", + "\n", + "* Optuna: [documentation](https://optuna.org/)\n", + "* Ray Tune: A scalable hyperparameter tuning library, particularly useful if you need to distribute tuning across multiple machines. See [documentation](https://docs.ray.io/en/latest/tune/index.html) for more." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Acknowledgements\n", + "\n", + "* Many thanks to HP Marshall (my advisor) for his mentorship and support. \n", + "* Many thanks to e-Science institute and all organizing members for allowing me deploy/present this tutorial. A huge thanks to eveyone for listening." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Reference\n", + "\n", + "1. [Deep Learning with Python](https://www.manning.com/books/deep-learning-with-python)\n", + "2. [Machine Learning Bookcamp](https://www.manning.com/books/machine-learning-bookcamp?query=machine)\n", + "3. [An Introduction to Statistical Learning with Applications in R](https://link.springer.com/book/10.1007%2F978-1-4614-7138-7) (available online for free)\n", + "4. [Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems 2nd Edition](https://www.amazon.com/Hands-Machine-Learning-Scikit-Learn-TensorFlow/dp/1492032646)\n", + "[Ensemble Methods for Machine Learning](https://www.manning.com/books/ensemble-methods-for-machine-learning)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.5" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/book/tutorials/NN_with_Pytorch/data/clean_data.csv b/book/tutorials/NN_with_Pytorch/data/clean_data.csv new file mode 100644 index 0000000..8e08a69 --- /dev/null +++ b/book/tutorials/NN_with_Pytorch/data/clean_data.csv @@ -0,0 +1,2470 @@ +swe,snowdepth,tempavg_7_days_avg,precip_7_days_avg,snowdensity +27.177999999999997,91.44,-1.4142857142857144,0.6531428571428571,0.2972222222222222 +27.686,91.44,-1.5285714285714287,0.5442857142857143,0.3027777777777778 +27.686,91.44,-0.9714285714285715,0.43542857142857144,0.3027777777777778 +27.686,88.9,-0.5571428571428577,0.3991428571428571,0.3114285714285714 +27.686,88.9,-0.27142857142857185,0.18142857142857144,0.3114285714285714 +27.94,86.36,-0.4000000000000003,0.18142857142857144,0.3235294117647059 +28.702,93.98,0.49999999999999983,0.32657142857142857,0.3054054054054054 +28.702,93.98,1.0571428571428567,0.2902857142857143,0.3054054054054054 +28.956000000000003,96.52,1.342857142857143,0.254,0.30000000000000004 +29.464,99.06,0.9571428571428573,0.32657142857142857,0.29743589743589743 +30.988,111.76,0.728571428571429,0.5805714285714286,0.2772727272727273 +32.257999999999996,116.84,0.1428571428571434,0.7257142857142858,0.2760869565217391 +32.512,116.84,-0.25714285714285684,0.7257142857142858,0.2782608695652174 +35.052,137.16,-0.5571428571428569,0.9434285714285714,0.25555555555555554 +35.052,134.62,-0.8142857142857142,0.9797142857142855,0.26037735849056604 +35.052,132.08,-1.3285714285714287,0.9434285714285713,0.26538461538461533 +34.798,129.54,-1.7857142857142863,0.8708571428571429,0.2686274509803922 +36.576,144.78,-2.342857142857143,0.8708571428571429,0.25263157894736843 +36.83,142.24,-2.4285714285714284,0.7257142857142856,0.2589285714285714 +36.83,142.24,-2.585714285714286,0.6894285714285714,0.2589285714285714 +36.83,139.7,-2.8714285714285714,0.3265714285714285,0.26363636363636367 +36.83,137.16,-2.8857142857142857,0.2902857142857143,0.2685185185185185 +37.083999999999996,134.62,-2.7142857142857144,0.3265714285714285,0.2754716981132075 +37.338,124.46000000000001,-2.357142857142857,0.3991428571428571,0.3 +37.338,134.62,-1.9714285714285715,0.14514285714285716,0.27735849056603773 +37.338,134.62,-2.1,0.10885714285714286,0.27735849056603773 +37.592000000000006,132.08,-1.9714285714285715,0.14514285714285716,0.28461538461538466 +37.846000000000004,137.16,-1.6571428571428577,0.21771428571428572,0.27592592592592596 +38.862,147.32,-1.7571428571428573,0.3628571428571429,0.2637931034482759 +39.116,144.78,-1.6714285714285713,0.3628571428571429,0.27017543859649124 +39.624,144.78,-1.8000000000000003,0.3628571428571429,0.2736842105263158 +39.624,142.24,-1.7714285714285716,0.3628571428571429,0.2785714285714286 +39.624,139.7,-1.8000000000000003,0.3628571428571429,0.2836363636363637 +39.624,139.7,-2.0714285714285716,0.32657142857142857,0.2836363636363637 +39.878,139.7,-2.2857142857142856,0.32657142857142857,0.28545454545454546 +41.147999999999996,147.32,-1.785714285714286,0.3628571428571429,0.2793103448275862 +41.656,147.32,-1.8,0.39914285714285713,0.2827586206896552 +41.910000000000004,144.78,-1.614285714285714,0.39914285714285713,0.2894736842105263 +42.164,144.78,-1.3428571428571427,0.43542857142857144,0.2912280701754386 +42.418,144.78,-1.1428571428571428,0.4717142857142857,0.29298245614035084 +42.672000000000004,144.78,-0.6000000000000002,0.508,0.2947368421052632 +42.672000000000004,142.24,-0.3714285714285715,0.43542857142857144,0.3 +42.672000000000004,142.24,-0.7571428571428572,0.254,0.3 +42.672000000000004,139.7,-1.1857142857142857,0.18142857142857144,0.30545454545454553 +42.672000000000004,139.7,-1.8285714285714287,0.10885714285714286,0.30545454545454553 +42.418,139.7,-2.5714285714285716,0.07257142857142858,0.30363636363636365 +42.418,139.7,-2.5428571428571436,0.03628571428571429,0.30363636363636365 +42.925999999999995,142.24,-2.7142857142857144,0.07257142857142858,0.3017857142857142 +43.18,144.78,-2.5571428571428574,0.14514285714285716,0.2982456140350877 +43.18,142.24,-2.3285714285714287,0.18142857142857144,0.30357142857142855 +46.736,165.1,-1.9285714285714286,0.6894285714285714,0.28307692307692306 +46.99,165.1,-1.2000000000000004,0.7257142857142858,0.28461538461538466 +46.99,162.56,-0.5428571428571428,0.7619999999999999,0.2890625 +47.24400000000001,157.48,-0.14285714285714263,0.7982857142857142,0.30000000000000004 +47.752,154.94,0.15714285714285747,0.7982857142857142,0.3081967213114754 +48.006,152.4,0.3142857142857146,0.7619999999999999,0.315 +48.006,154.94,0.2571428571428573,0.7257142857142858,0.3098360655737705 +48.26,152.4,0.185714285714286,0.254,0.31666666666666665 +48.26,152.4,0.042857142857143087,0.21771428571428572,0.31666666666666665 +48.26,152.4,0.15714285714285722,0.18142857142857144,0.31666666666666665 +48.26,149.86,-0.8142857142857143,0.14514285714285716,0.3220338983050847 +48.006,144.78,-2.0142857142857147,0.07257142857142858,0.33157894736842103 +48.26,149.86,-2.6999999999999997,0.07257142857142858,0.3220338983050847 +49.275999999999996,157.48,-2.8285714285714287,0.21771428571428572,0.31290322580645163 +50.546,162.56,-2.9714285714285715,0.3628571428571429,0.3109375 +50.546,165.1,-3.4571428571428577,0.39914285714285713,0.30615384615384617 +50.8,162.56,-3.8285714285714287,0.43542857142857144,0.3125 +50.8,160.02,-2.785714285714286,0.43542857142857144,0.31746031746031744 +50.8,157.48,-1.485714285714286,0.43542857142857144,0.3225806451612903 +51.054,157.48,-1.1857142857142857,0.43542857142857144,0.3241935483870968 +51.054,154.94,-1.028571428571429,0.2902857142857143,0.3295081967213115 +51.054,154.94,-0.9714285714285718,0.10885714285714286,0.3295081967213115 +51.054,152.4,0.11428571428571388,0.07257142857142858,0.335 +51.308,154.94,0.44285714285714256,0.14514285714285716,0.33114754098360655 +51.562000000000005,154.94,-0.14285714285714338,0.18142857142857144,0.33278688524590166 +51.815999999999995,152.4,-0.5142857142857148,0.21771428571428572,0.33999999999999997 +51.815999999999995,152.4,-0.028571428571429264,0.18142857142857144,0.33999999999999997 +51.815999999999995,152.4,0.04285714285714233,0.21771428571428572,0.33999999999999997 +52.07,154.94,-0.014285714285714679,0.2902857142857143,0.3360655737704918 +52.324000000000005,154.94,-0.45714285714285746,0.32657142857142857,0.3377049180327869 +53.34,160.02,-0.4000000000000004,0.3628571428571429,0.3333333333333333 +56.13400000000001,175.26,-0.3714285714285716,0.7257142857142858,0.3202898550724638 +56.388,180.34,-0.8857142857142859,0.7257142857142859,0.31267605633802814 +56.388,175.26,-1.6571428571428568,0.7619999999999999,0.32173913043478264 +56.642,172.72,-2.214285714285714,0.7620000000000001,0.32794117647058824 +59.69,203.2,-2.528571428571428,1.124857142857143,0.29375 +60.452000000000005,200.66,-3.242857142857143,1.1974285714285717,0.3012658227848102 +62.230000000000004,215.9,-3.8857142857142852,1.3425714285714287,0.2882352941176471 +62.484,210.82,-4.128571428571428,0.9797142857142858,0.29638554216867474 +63.754000000000005,215.9,-4.014285714285714,1.124857142857143,0.2952941176470588 +64.77,208.28,-3.3285714285714287,1.2337142857142858,0.31097560975609756 +66.29400000000001,213.36,-3.5571428571428574,1.4514285714285715,0.3107142857142857 +66.548,215.9,-3.657142857142857,1.0522857142857143,0.30823529411764705 +66.548,210.82,-3.4714285714285715,0.9434285714285713,0.31566265060240967 +67.056,205.74,-2.9142857142857146,0.7257142857142856,0.3259259259259259 +67.31,203.2,-2.3857142857142857,0.7619999999999999,0.33125000000000004 +67.056,198.12,-1.885714285714286,0.5805714285714286,0.3384615384615384 +67.056,195.58,-1.757142857142857,0.43542857142857144,0.3428571428571428 +68.326,195.58,-0.6285714285714282,0.3628571428571429,0.3493506493506493 +68.072,187.96,0.9285714285714287,0.32657142857142857,0.3621621621621622 +67.31,182.88,2.0571428571428574,0.32657142857142857,0.3680555555555556 +66.802,177.8,2.7,0.254,0.3757142857142857 +65.532,172.72,3.6428571428571432,0.18142857142857144,0.37941176470588234 +65.024,167.64000000000001,4.371428571428572,0.21771428571428572,0.3878787878787878 +64.51599999999999,170.18,4.242857142857143,0.3628571428571429,0.3791044776119402 +63.754000000000005,170.18,4.271428571428571,0.18142857142857144,0.37462686567164183 +63.245999999999995,167.64000000000001,3.9,0.18142857142857144,0.3772727272727272 +63.245999999999995,165.1,3.057142857142857,0.18142857142857144,0.38307692307692304 +62.738,165.1,2.585714285714286,0.18142857142857144,0.38 +64.51599999999999,165.1,1.9142857142857146,0.43542857142857144,0.3907692307692307 +62.230000000000004,162.56,1.2857142857142858,0.43542857142857144,0.3828125 +60.705999999999996,160.02,0.9857142857142859,0.2902857142857143,0.3793650793650793 +60.452000000000005,160.02,0.47142857142857164,0.2902857142857143,0.37777777777777777 +60.198,157.48,3.5685740077237176e-16,0.2902857142857143,0.38225806451612904 +59.69,154.94,0.2428571428571431,0.2902857142857143,0.38524590163934425 +59.436,152.4,0.11428571428571419,0.2902857142857143,0.38999999999999996 +60.96,172.72,-0.5714285714285715,0.2902857142857143,0.35294117647058826 +61.467999999999996,170.18,-1.2857142857142858,0.3265714285714285,0.3611940298507462 +61.722,165.1,-1.5142857142857145,0.3628571428571429,0.3738461538461539 +61.722,160.02,-1.4428571428571428,0.3628571428571429,0.3857142857142857 +61.976,157.48,-1.3428571428571432,0.3991428571428571,0.3935483870967742 +61.722,154.94,-1.0714285714285714,0.3991428571428571,0.3983606557377049 +61.467999999999996,154.94,-0.6714285714285716,0.3991428571428571,0.39672131147540984 +62.992000000000004,177.8,-0.14285714285714327,0.508,0.3542857142857143 +62.484,162.56,0.9571428571428571,0.43542857142857144,0.384375 +62.484,157.48,2.1714285714285713,0.39914285714285713,0.3967741935483871 +61.214000000000006,154.94,3.257142857142857,0.39914285714285713,0.3950819672131148 +59.436,149.86,4.328571428571428,0.3628571428571429,0.3966101694915254 +56.895999999999994,144.78,5.3,0.3628571428571429,0.3929824561403508 +54.61,139.7,6.142857142857144,0.39914285714285713,0.39090909090909093 +52.07,134.62,7.057142857142858,0.07257142857142858,0.38679245283018865 +50.038,129.54,7.057142857142858,0.14514285714285716,0.3862745098039216 +49.275999999999996,129.54,6.557142857142858,0.32657142857142857,0.3803921568627451 +49.53,129.54,5.371428571428572,0.3628571428571429,0.3823529411764706 +49.275999999999996,132.08,4.142857142857144,0.43542857142857144,0.37307692307692303 +48.768,127.0,2.900000000000001,0.43542857142857144,0.384 +48.768,127.0,1.5285714285714291,0.39914285714285713,0.384 +47.752,124.46000000000001,0.7428571428571438,0.3628571428571429,0.3836734693877551 +47.498,121.92,0.685714285714286,0.39914285714285713,0.3895833333333333 +45.72,116.84,0.8857142857142858,0.32657142857142857,0.3913043478260869 +44.958,116.84,1.5285714285714285,0.39914285714285713,0.3847826086956522 +43.434000000000005,114.3,1.8857142857142857,0.32657142857142857,0.38000000000000006 +42.925999999999995,111.76,2.142857142857143,0.32657142857142857,0.38409090909090904 +40.894000000000005,106.68,2.9428571428571426,0.32657142857142857,0.38333333333333336 +38.862,101.6,3.4142857142857137,0.3628571428571429,0.38250000000000006 +36.83,96.52,3.6428571428571423,0.254,0.3815789473684211 +33.782000000000004,88.9,3.9428571428571426,0.32657142857142857,0.38 +31.75,83.82000000000001,4.0,0.254,0.37878787878787873 +29.21,78.74,4.2142857142857135,0.39914285714285713,0.37096774193548393 +26.416,73.66,4.785714285714285,0.39914285714285713,0.3586206896551724 +24.892000000000003,68.58,4.842857142857142,0.5805714285714286,0.36296296296296304 +21.843999999999998,63.5,4.785714285714285,0.5442857142857143,0.344 +19.304,55.88,4.971428571428571,0.6531428571428571,0.3454545454545454 +15.748000000000001,48.26,4.799999999999999,0.508,0.3263157894736842 +12.446000000000002,40.64,4.785714285714286,0.4717142857142857,0.30625 +8.89,33.02,5.142857142857143,0.32657142857142857,0.2692307692307692 +4.572,25.4,5.685714285714285,0.32657142857142857,0.18000000000000002 +3.302,15.24,0.5714285714285717,0.5442857142857143,0.21666666666666667 +3.048,17.78,0.185714285714286,0.5442857142857143,0.17142857142857143 +3.5559999999999996,17.78,0.0571428571428571,0.508,0.19999999999999996 +3.5559999999999996,20.32,0.19999999999999973,0.32657142857142857,0.175 +3.5559999999999996,27.94,0.5714285714285717,0.5442857142857143,0.12727272727272726 +4.064,27.94,0.1142857142857144,0.5805714285714286,0.14545454545454545 +4.318,22.86,-1.2,0.5805714285714286,0.18888888888888888 +4.318,25.4,-2.8142857142857145,0.5805714285714286,0.16999999999999998 +5.842,48.26,-4.8,0.7257142857142858,0.12105263157894737 +6.096,40.64,-6.985714285714286,0.6894285714285715,0.15 +6.35,35.56,-8.385714285714284,0.5442857142857143,0.17857142857142855 +6.8580000000000005,33.02,-8.042857142857143,0.508,0.20769230769230768 +7.111999999999999,30.48,-7.542857142857143,0.4717142857142857,0.2333333333333333 +7.111999999999999,33.02,-7.385714285714286,0.43542857142857144,0.21538461538461534 +6.8580000000000005,33.02,-7.371428571428571,0.43542857142857144,0.20769230769230768 +7.62,35.56,-6.571428571428571,0.32657142857142857,0.21428571428571427 +9.398000000000001,48.26,-4.314285714285715,0.5442857142857143,0.1947368421052632 +9.652,50.8,-2.914285714285715,0.508,0.19 +9.652,48.26,-3.257142857142857,0.43542857142857144,0.19999999999999998 +9.652,45.72,-3.900000000000001,0.3991428571428571,0.2111111111111111 +10.414,40.64,-4.414285714285715,0.508,0.25625 +10.668000000000001,30.48,-4.242857142857143,0.5805714285714286,0.35000000000000003 +10.668000000000001,25.4,-3.657142857142858,0.508,0.42000000000000004 +11.43,25.4,-3.6142857142857148,0.3628571428571429,0.45 +12.446000000000002,30.48,-3.485714285714286,0.4717142857142857,0.4083333333333334 +15.24,50.8,-2.9857142857142867,0.8708571428571429,0.30000000000000004 +15.24,76.2,-2.6571428571428575,0.9071428571428573,0.19999999999999998 +18.034,83.82000000000001,-1.7857142857142863,1.1974285714285717,0.21515151515151512 +17.78,66.04,-0.5428571428571436,1.27,0.2692307692307692 +18.288,50.8,-0.15714285714285764,1.3425714285714287,0.36000000000000004 +19.558,71.12,-0.6428571428571435,1.4151428571428573,0.27499999999999997 +20.066000000000003,71.12,-1.3000000000000007,1.3425714285714285,0.28214285714285714 +20.066000000000003,73.66,-1.9142857142857148,0.9434285714285714,0.2724137931034483 +20.066000000000003,66.04,-2.4428571428571435,0.9071428571428573,0.3038461538461539 +20.828,81.28,-3.228571428571429,0.6168571428571428,0.25625 +21.336000000000002,76.2,-4.742857142857143,0.5442857142857143,0.28 +22.098,78.74,-5.771428571428572,0.5805714285714286,0.2806451612903226 +22.352000000000004,76.2,-5.714285714285716,0.43542857142857144,0.2933333333333334 +22.352000000000004,81.28,-5.528571428571429,0.39914285714285713,0.275 +22.606,83.82000000000001,-5.271428571428573,0.43542857142857144,0.2696969696969697 +23.368,88.9,-4.471428571428572,0.5442857142857143,0.26285714285714284 +23.622000000000003,86.36,-3.442857142857144,0.4717142857142857,0.2735294117647059 +24.13,91.44,-3.0142857142857147,0.4717142857142857,0.2638888888888889 +26.67,114.3,-2.7571428571428576,0.6894285714285715,0.23333333333333336 +27.432000000000002,119.38,-2.4571428571428577,0.8345714285714286,0.22978723404255322 +27.177999999999997,111.76,-3.1285714285714294,0.7982857142857143,0.24318181818181814 +26.924,109.22,-4.514285714285715,0.7619999999999999,0.24651162790697675 +26.924,109.22,-6.314285714285715,0.6531428571428571,0.24651162790697675 +27.177999999999997,109.22,-7.271428571428572,0.653142857142857,0.24883720930232556 +27.177999999999997,104.14,-7.2,0.6168571428571429,0.2609756097560975 +27.432000000000002,104.14,-7.242857142857143,0.2902857142857143,0.2634146341463415 +27.432000000000002,91.44,-7.100000000000001,0.14514285714285716,0.30000000000000004 +27.686,101.6,-5.842857142857143,0.18142857142857144,0.2725 +27.94,99.06,-3.5428571428571436,0.21771428571428572,0.28205128205128205 +27.686,99.06,-1.5000000000000007,0.21771428571428572,0.2794871794871795 +27.686,96.52,-1.428571428571429,0.18142857142857144,0.2868421052631579 +27.94,99.06,-2.0714285714285725,0.18142857142857144,0.28205128205128205 +27.94,99.06,-3.2000000000000006,0.14514285714285716,0.28205128205128205 +28.702,96.52,-4.7285714285714295,0.254,0.2973684210526316 +31.496000000000002,119.38,-4.885714285714286,0.6168571428571429,0.2638297872340426 +32.257999999999996,116.84,-5.028571428571429,0.6894285714285715,0.2760869565217391 +32.512,109.22,-4.685714285714286,0.7619999999999999,0.29767441860465116 +34.29,106.68,-3.400000000000001,1.016,0.3214285714285714 +32.257999999999996,96.52,-1.6571428571428573,1.5965714285714285,0.33421052631578946 +32.512,99.06,-0.057142857142857086,1.7417142857142858,0.3282051282051282 +32.766,99.06,1.0285714285714282,1.6328571428571428,0.33076923076923076 +32.512,101.6,0.5428571428571424,1.2337142857142855,0.32 +32.004,99.06,0.4285714285714283,1.1611428571428573,0.32307692307692304 +32.766,96.52,0.2857142857142857,1.1974285714285713,0.3394736842105263 +32.004,96.52,0.20000000000000015,0.9434285714285713,0.33157894736842103 +31.496000000000002,93.98,0.09999999999999977,0.3628571428571429,0.33513513513513515 +31.75,93.98,0.49999999999999967,0.254,0.33783783783783783 +32.257999999999996,91.44,1.3714285714285712,0.2902857142857143,0.35277777777777775 +32.004,91.44,2.8428571428571425,0.2902857142857143,0.35 +32.004,91.44,3.7142857142857144,0.254,0.35 +31.242,91.44,3.742857142857143,0.14514285714285716,0.3416666666666667 +31.75,93.98,3.428571428571428,0.21771428571428572,0.33783783783783783 +30.988,93.98,2.7142857142857144,0.18142857142857144,0.3297297297297297 +31.75,93.98,1.1999999999999997,0.254,0.33783783783783783 +30.733999999999998,93.98,-0.5142857142857148,0.18142857142857144,0.327027027027027 +29.464,93.98,-1.2142857142857146,0.21771428571428572,0.3135135135135135 +30.226000000000003,91.44,-1.7428571428571435,0.32657142857142857,0.3305555555555556 +31.242,88.9,-1.6142857142857152,0.4717142857142857,0.3514285714285714 +29.972,88.9,-1.7142857142857153,0.39914285714285713,0.33714285714285713 +31.242,88.9,-1.2428571428571438,0.5805714285714286,0.3514285714285714 +31.75,88.9,-0.5571428571428579,0.5442857142857143,0.3571428571428571 +31.242,88.9,0.05714285714285643,0.5805714285714286,0.3514285714285714 +31.75,91.44,-0.42857142857142966,0.6168571428571428,0.3472222222222222 +30.48,88.9,-0.5857142857142865,0.508,0.34285714285714286 +31.75,88.9,-0.37142857142857216,0.5442857142857143,0.3571428571428571 +30.48,99.06,-0.042857142857143184,0.6894285714285715,0.3076923076923077 +31.242,96.52,-0.44285714285714345,0.6168571428571428,0.3236842105263158 +31.75,106.68,-0.04285714285714347,0.6168571428571428,0.2976190476190476 +32.766,111.76,0.028571428571428217,0.7257142857142858,0.29318181818181815 +32.766,106.68,-0.6571428571428573,0.653142857142857,0.3071428571428571 +33.02,109.22,-2.0571428571428574,0.6894285714285714,0.3023255813953489 +33.528,114.3,-3.7285714285714286,0.5805714285714286,0.29333333333333333 +33.782000000000004,111.76,-4.8999999999999995,0.4717142857142857,0.3022727272727273 +34.29,111.76,-5.700000000000001,0.43542857142857144,0.3068181818181818 +34.544,114.3,-6.471428571428572,0.39914285714285713,0.3022222222222222 +35.814,124.46000000000001,-6.985714285714287,0.43542857142857144,0.28775510204081634 +37.083999999999996,127.0,-7.271428571428571,0.6168571428571428,0.292 +37.592000000000006,132.08,-8.171428571428573,0.6531428571428572,0.28461538461538466 +37.592000000000006,124.46000000000001,-9.514285714285716,0.5805714285714286,0.3020408163265306 +38.1,127.0,-9.957142857142857,0.6531428571428571,0.3 +39.37,144.78,-9.657142857142858,0.7619999999999999,0.27192982456140347 +43.942,180.34,-9.557142857142859,1.4151428571428573,0.24366197183098592 +45.72,180.34,-8.828571428571431,1.4877142857142858,0.2535211267605634 +46.736,180.34,-8.02857142857143,1.4514285714285715,0.2591549295774648 +47.24400000000001,185.42000000000002,-6.757142857142859,1.4514285714285715,0.2547945205479452 +48.26,185.42000000000002,-5.02857142857143,1.5965714285714285,0.2602739726027397 +48.26,180.34,-4.000000000000001,1.4877142857142858,0.2676056338028169 +48.514,152.4,-3.985714285714287,1.3425714285714285,0.31833333333333336 +48.514,144.78,-3.985714285714287,0.6531428571428571,0.33508771929824566 +48.768,160.02,-3.8714285714285728,0.43542857142857144,0.30476190476190473 +50.8,167.64000000000001,-3.3428571428571443,0.5805714285714286,0.303030303030303 +52.577999999999996,193.04,-2.9571428571428586,0.7619999999999999,0.2723684210526316 +52.832,187.96,-2.8285714285714296,0.6531428571428571,0.2810810810810811 +53.086,185.42000000000002,-2.8714285714285728,0.6894285714285714,0.2863013698630137 +55.372,203.2,-2.3857142857142866,0.9797142857142856,0.2725 +56.388,200.66,-1.8142857142857154,1.1248571428571428,0.2810126582278481 +58.166,213.36,-1.6857142857142868,1.3425714285714285,0.2726190476190476 +58.67400000000001,213.36,-2.3285714285714296,1.1611428571428573,0.275 +58.928,210.82,-2.657142857142858,0.9434285714285714,0.27951807228915665 +62.738,236.22,-2.5857142857142863,1.4514285714285715,0.26559139784946234 +62.738,228.6,-2.7000000000000006,1.4151428571428573,0.27444444444444444 +64.262,241.3,-3.0142857142857156,1.3425714285714285,0.2663157894736842 +64.262,233.68,-3.0857142857142867,1.1974285714285713,0.27499999999999997 +64.51599999999999,228.6,-3.557142857142859,0.9797142857142858,0.2822222222222222 +65.786,236.22,-3.4142857142857155,1.0522857142857143,0.278494623655914 +67.818,238.76,-3.014285714285716,1.378857142857143,0.28404255319148936 +68.072,241.3,-2.9714285714285724,0.8708571428571429,0.28210526315789475 +68.834,246.38,-2.885714285714287,0.9797142857142856,0.2793814432989691 +69.596,243.84,-2.8000000000000007,0.8345714285714286,0.28541666666666665 +69.85,243.84,-2.8000000000000007,0.8708571428571429,0.2864583333333333 +70.61200000000001,243.84,-2.157142857142858,0.9434285714285713,0.28958333333333336 +69.596,220.98,-1.114285714285715,0.8708571428571429,0.3149425287356322 +65.024,208.28,-0.5142857142857152,0.5442857142857143,0.3121951219512195 +64.008,205.74,0.4428571428571417,0.5442857142857143,0.31111111111111106 +62.738,205.74,0.29999999999999866,0.4717142857142857,0.30493827160493825 +62.992000000000004,203.2,0.3285714285714271,0.39914285714285713,0.31000000000000005 +64.262,213.36,0.47142857142857014,0.5442857142857143,0.3011904761904762 +65.278,218.44,-0.08571428571428706,0.5805714285714286,0.2988372093023256 +66.29400000000001,223.52,-1.4285714285714302,0.6168571428571428,0.2965909090909091 +66.802,218.44,-2.5571428571428583,0.6531428571428572,0.30581395348837215 +67.056,213.36,-3.3142857142857154,0.6531428571428571,0.3142857142857143 +67.31,210.82,-2.8857142857142866,0.653142857142857,0.31927710843373497 +67.56400000000001,205.74,-2.4142857142857155,0.6531428571428571,0.32839506172839505 +68.326,210.82,-2.742857142857144,0.5805714285714286,0.32409638554216863 +68.58,208.28,-2.6571428571428584,0.4717142857142857,0.32926829268292684 +69.088,208.28,-2.271428571428573,0.39914285714285713,0.3317073170731707 +70.866,218.44,-1.9857142857142873,0.5805714285714286,0.3244186046511628 +71.628,223.52,-1.7142857142857157,0.6531428571428571,0.32045454545454544 +71.37400000000001,208.28,-1.471428571428573,0.6168571428571428,0.3426829268292683 +71.37400000000001,208.28,-2.1428571428571446,0.5805714285714286,0.3426829268292683 +71.37400000000001,205.74,-2.314285714285716,0.47171428571428564,0.3469135802469136 +71.37400000000001,205.74,-2.3428571428571443,0.43542857142857144,0.3469135802469136 +71.628,205.74,-2.2714285714285727,0.3991428571428571,0.34814814814814815 +71.628,205.74,-2.471428571428573,0.14514285714285716,0.34814814814814815 +72.136,203.2,-2.757142857142859,0.10885714285714286,0.355 +71.882,203.2,-2.757142857142859,0.14514285714285716,0.35375000000000006 +71.882,200.66,-2.1285714285714303,0.14514285714285716,0.35822784810126584 +73.914,220.98,-1.7428571428571442,0.43542857142857144,0.33448275862068966 +74.16799999999999,215.9,-1.4000000000000015,0.4717142857142857,0.34352941176470586 +74.676,220.98,-1.4000000000000015,0.5442857142857143,0.33793103448275863 +74.676,218.44,-1.2428571428571442,0.5442857142857143,0.3418604651162791 +74.93,215.9,-1.3571428571428588,0.508,0.3470588235294118 +75.18400000000001,213.36,-1.5571428571428585,0.508,0.3523809523809524 +74.422,210.82,-1.2571428571428582,0.5442857142857143,0.3530120481927711 +75.18400000000001,213.36,-0.92857142857143,0.3628571428571429,0.3523809523809524 +75.69200000000001,208.28,-0.9142857142857158,0.39914285714285713,0.3634146341463415 +76.708,205.74,-0.14285714285714451,0.43542857142857144,0.3728395061728395 +77.47,200.66,0.842857142857141,0.5442857142857143,0.3860759493670886 +76.708,198.12,1.4714285714285695,0.5442857142857143,0.38717948717948714 +76.45400000000001,198.12,1.6285714285714268,0.5442857142857143,0.3858974358974359 +75.69200000000001,195.58,1.2428571428571409,0.508,0.38701298701298703 +77.724,190.5,1.528571428571427,0.6894285714285715,0.40800000000000003 +76.2,185.42000000000002,2.642857142857142,0.6168571428571428,0.410958904109589 +73.66,185.42000000000002,2.7857142857142847,0.508,0.39726027397260266 +72.136,182.88,2.399999999999999,0.39914285714285713,0.39444444444444443 +71.882,180.34,2.7857142857142847,0.3628571428571429,0.39859154929577467 +74.93,172.72,3.5571428571428565,0.7982857142857143,0.4338235294117648 +71.37400000000001,177.8,3.7999999999999994,1.1611428571428573,0.40142857142857147 +71.12,175.26,3.3857142857142852,0.8708571428571429,0.4057971014492754 +70.104,172.72,2.614285714285714,0.8708571428571429,0.40588235294117647 +69.85,170.18,2.585714285714285,0.8345714285714286,0.4104477611940298 +69.088,167.64000000000001,3.3142857142857136,0.8345714285714286,0.41212121212121205 +68.072,162.56,3.771428571428571,0.8345714285714286,0.41875 +66.29400000000001,160.02,3.4714285714285706,0.39914285714285713,0.4142857142857143 +65.278,157.48,3.6285714285714272,0.03628571428571429,0.41451612903225815 +63.5,152.4,3.9285714285714275,0.03628571428571429,0.41666666666666663 +62.992000000000004,149.86,4.342857142857142,0.03628571428571429,0.42033898305084744 +62.738,152.4,3.999999999999999,0.21771428571428572,0.4116666666666666 +61.722,147.32,3.214285714285713,0.21771428571428572,0.4189655172413793 +61.214000000000006,144.78,2.199999999999999,0.254,0.4228070175438597 +61.214000000000006,147.32,1.6428571428571421,0.254,0.4155172413793104 +60.705999999999996,142.24,1.7142857142857133,0.254,0.4267857142857142 +58.928,139.7,2.042857142857142,0.2902857142857143,0.4218181818181818 +59.69,142.24,1.9285714285714273,0.5442857142857143,0.4196428571428571 +58.928,139.7,1.97142857142857,0.47171428571428564,0.4218181818181818 +57.912000000000006,137.16,2.157142857142856,0.47171428571428564,0.4222222222222223 +56.13400000000001,132.08,2.7571428571428562,0.43542857142857144,0.425 +53.594,124.46000000000001,3.9142857142857133,0.3991428571428571,0.4306122448979592 +51.054,119.38,4.8999999999999995,0.43542857142857144,0.4276595744680851 +47.752,111.76,5.628571428571427,0.3991428571428571,0.42727272727272725 +45.212,106.68,5.657142857142857,0.14514285714285716,0.4238095238095238 +43.434000000000005,104.14,5.828571428571428,0.10885714285714286,0.41707317073170735 +41.910000000000004,101.6,6.542857142857143,0.10885714285714286,0.41250000000000003 +39.116,93.98,7.028571428571427,0.10885714285714286,0.4162162162162162 +36.83,88.9,6.899999999999999,0.10885714285714286,0.41428571428571426 +34.036,83.82000000000001,6.371428571428571,0.07257142857142858,0.40606060606060607 +31.242,78.74,5.799999999999999,0.07257142857142858,0.3967741935483871 +28.194,73.66,6.07142857142857,0.07257142857142858,0.38275862068965516 +25.907999999999998,68.58,5.914285714285713,0.0,0.37777777777777777 +22.86,58.42,5.5857142857142845,0.03628571428571429,0.3913043478260869 +19.812,50.8,5.614285714285714,0.03628571428571429,0.39000000000000007 +16.002,43.18,5.499999999999999,0.03628571428571429,0.3705882352941176 +10.668000000000001,35.56,5.499999999999999,0.03628571428571429,0.3 +6.096,22.86,6.114285714285714,0.03628571428571429,0.26666666666666666 +4.572,22.86,-1.4714285714285729,0.508,0.2 +6.096,38.1,-2.72857142857143,0.7257142857142858,0.16 +6.35,38.1,-3.800000000000001,0.653142857142857,0.16666666666666666 +7.111999999999999,45.72,-4.642857142857144,0.6894285714285715,0.15555555555555553 +7.366,43.18,-5.471428571428573,0.7620000000000001,0.17058823529411765 +8.636,48.26,-5.271428571428572,0.9434285714285713,0.17894736842105263 +13.462,68.58,-4.257142857142859,1.6328571428571428,0.1962962962962963 +13.97,53.34,-3.985714285714287,1.4514285714285715,0.2619047619047619 +14.986,63.5,-3.9714285714285724,1.3788571428571428,0.23600000000000002 +15.24,60.96,-3.685714285714287,1.415142857142857,0.25 +15.24,55.88,-1.9428571428571444,1.3425714285714285,0.2727272727272727 +15.494,55.88,-0.6714285714285725,1.3062857142857143,0.2772727272727273 +15.24,55.88,-0.6428571428571439,1.124857142857143,0.2727272727272727 +15.494,53.34,-0.6428571428571439,0.4717142857142857,0.29047619047619044 +15.494,55.88,-0.8857142857142869,0.32657142857142857,0.2772727272727273 +15.494,53.34,0.15714285714285556,0.18142857142857144,0.29047619047619044 +15.494,53.34,0.47142857142857003,0.10885714285714286,0.29047619047619044 +15.494,53.34,0.2714285714285703,0.07257142857142858,0.29047619047619044 +15.24,53.34,-0.22857142857142976,0.03628571428571429,0.2857142857142857 +15.494,53.34,0.2714285714285703,0.07257142857142858,0.29047619047619044 +15.494,53.34,0.9857142857142847,0.03628571428571429,0.29047619047619044 +15.24,53.34,1.3999999999999988,0.03628571428571429,0.2857142857142857 +15.494,53.34,1.199999999999999,0.07257142857142858,0.29047619047619044 +15.494,53.34,2.0999999999999988,0.07257142857142858,0.29047619047619044 +15.24,53.34,2.1428571428571415,0.07257142857142858,0.2857142857142857 +15.24,53.34,1.6714285714285704,0.07257142857142858,0.2857142857142857 +14.986,50.8,0.21428571428571302,0.03628571428571429,0.29500000000000004 +15.494,53.34,-1.0571428571428583,0.10885714285714286,0.29047619047619044 +15.494,53.34,-1.357142857142858,0.10885714285714286,0.29047619047619044 +15.494,53.34,-1.7285714285714298,0.07257142857142858,0.29047619047619044 +15.748000000000001,53.34,-1.542857142857144,0.10885714285714286,0.29523809523809524 +15.748000000000001,53.34,-0.8714285714285724,0.10885714285714286,0.29523809523809524 +15.24,53.34,-0.12857142857142959,0.10885714285714286,0.2857142857142857 +15.494,53.34,1.299999999999999,0.14514285714285716,0.29047619047619044 +15.24,53.34,1.6571428571428561,0.07257142857142858,0.2857142857142857 +14.986,53.34,0.9571428571428562,0.07257142857142858,0.28095238095238095 +15.494,53.34,1.099999999999999,0.14514285714285716,0.29047619047619044 +15.494,53.34,0.5999999999999991,0.10885714285714286,0.29047619047619044 +15.494,53.34,0.17142857142857018,0.10885714285714286,0.29047619047619044 +16.002,60.96,0.04285714285714153,0.21771428571428572,0.26249999999999996 +16.256,58.42,-0.771428571428573,0.21771428571428572,0.2782608695652174 +18.034,66.04,-0.6714285714285732,0.47171428571428564,0.27307692307692305 +20.573999999999998,71.12,0.4285714285714271,0.9434285714285714,0.28928571428571426 +22.606,86.36,0.22857142857142712,1.1974285714285713,0.26176470588235295 +24.384,104.14,-0.4714285714285732,1.4514285714285715,0.23414634146341465 +24.384,96.52,-1.9571428571428586,1.4514285714285715,0.25263157894736843 +24.637999999999998,99.06,-2.242857142857144,1.3788571428571428,0.2487179487179487 +24.892000000000003,93.98,-1.6000000000000014,1.3788571428571428,0.2648648648648649 +25.146,91.44,-1.400000000000001,1.1611428571428573,0.275 +25.4,91.44,-1.1285714285714301,0.7257142857142858,0.2777777777777778 +25.654,93.98,-1.52857142857143,0.47171428571428564,0.27297297297297296 +25.654,91.44,-1.8142857142857156,0.21771428571428572,0.28055555555555556 +25.907999999999998,91.44,-0.9571428571428587,0.254,0.2833333333333333 +25.654,88.9,-0.17142857142857298,0.21771428571428572,0.28857142857142853 +25.907999999999998,88.9,0.08571428571428427,0.21771428571428572,0.29142857142857137 +25.654,88.9,-0.8285714285714303,0.18142857142857144,0.28857142857142853 +25.654,88.9,-2.257142857142859,0.14514285714285716,0.28857142857142853 +25.907999999999998,88.9,-1.485714285714287,0.14514285714285716,0.29142857142857137 +26.162000000000003,88.9,-0.042857142857144225,0.18142857142857144,0.2942857142857143 +26.416,93.98,-0.5000000000000011,0.21771428571428572,0.2810810810810811 +26.924,101.6,-2.300000000000001,0.2902857142857143,0.265 +27.432000000000002,101.6,-4.100000000000001,0.32657142857142857,0.27 +29.718,124.46000000000001,-4.614285714285716,0.6531428571428571,0.2387755102040816 +33.02,134.62,-4.114285714285716,1.124857142857143,0.24528301886792456 +35.306000000000004,147.32,-4.300000000000002,1.378857142857143,0.23965517241379314 +37.846000000000004,152.4,-5.02857142857143,1.7054285714285715,0.24833333333333335 +38.862,154.94,-5.014285714285715,1.8505714285714288,0.25081967213114753 +40.386,165.1,-4.32857142857143,1.9957142857142858,0.24461538461538465 +40.386,160.02,-3.6428571428571437,1.923142857142857,0.2523809523809524 +41.910000000000004,160.02,-2.6142857142857148,1.8142857142857143,0.2619047619047619 +43.687999999999995,172.72,-2.5142857142857156,1.5965714285714285,0.2529411764705882 +44.70400000000001,170.18,-3.2714285714285722,1.4151428571428573,0.26268656716417915 +44.958,165.1,-3.957142857142858,1.0885714285714285,0.2723076923076923 +45.212,157.48,-3.1714285714285717,0.9071428571428571,0.28709677419354845 +45.72,152.4,-2.2000000000000006,0.7619999999999999,0.3 +45.974000000000004,157.48,-1.7000000000000006,0.7982857142857143,0.2919354838709678 +46.228,152.4,-1.7142857142857149,0.6168571428571428,0.30333333333333334 +46.736,157.48,-1.785714285714286,0.43542857142857144,0.2967741935483871 +46.99,154.94,-1.285714285714286,0.3265714285714286,0.30327868852459017 +46.99,152.4,-1.2571428571428576,0.2902857142857143,0.30833333333333335 +46.99,152.4,-1.9428571428571433,0.254,0.30833333333333335 +47.24400000000001,149.86,-2.4571428571428577,0.21771428571428572,0.3152542372881356 +47.498,147.32,-2.7000000000000006,0.21771428571428572,0.32241379310344825 +47.752,147.32,-3.0857142857142863,0.21771428571428572,0.3241379310344828 +48.26,152.4,-2.6428571428571432,0.21771428571428572,0.31666666666666665 +48.26,149.86,-2.1571428571428575,0.18142857142857144,0.3220338983050847 +49.022000000000006,149.86,-1.2428571428571433,0.2902857142857143,0.3271186440677966 +49.022000000000006,149.86,-0.9714285714285719,0.2902857142857143,0.3271186440677966 +49.022000000000006,149.86,-0.9714285714285719,0.254,0.3271186440677966 +49.275999999999996,149.86,-0.8000000000000006,0.254,0.3288135593220338 +49.022000000000006,149.86,-1.0000000000000004,0.21771428571428572,0.3271186440677966 +49.275999999999996,149.86,-1.485714285714286,0.18142857142857144,0.3288135593220338 +49.53,149.86,-1.771428571428572,0.21771428571428572,0.33050847457627114 +50.8,160.02,-2.214285714285715,0.2902857142857143,0.31746031746031744 +52.324000000000005,177.8,-2.714285714285715,0.508,0.2942857142857143 +52.577999999999996,172.72,-3.414285714285715,0.5442857142857143,0.3044117647058823 +52.577999999999996,170.18,-3.3000000000000007,0.5805714285714286,0.308955223880597 +52.832,170.18,-2.285714285714286,0.8708571428571429,0.31044776119402984 +57.912000000000006,193.04,-2.2000000000000006,1.5602857142857143,0.30000000000000004 +58.166,187.96,-2.8714285714285714,1.560285714285714,0.3094594594594594 +65.532,208.28,-6.871428571428573,0.9071428571428573,0.3146341463414634 +66.04,200.66,-5.82857142857143,0.6531428571428571,0.32911392405063294 +66.29400000000001,195.58,-4.257142857142858,0.6168571428571428,0.338961038961039 +66.802,200.66,-3.471428571428573,0.6531428571428571,0.33291139240506334 +67.056,200.66,-3.4428571428571453,0.508,0.3341772151898734 +67.56400000000001,198.12,-2.471428571428573,0.32657142857142857,0.34102564102564104 +67.818,193.04,-0.6285714285714304,0.3628571428571429,0.3513157894736842 +67.818,190.5,0.385714285714284,0.32657142857142857,0.356 +68.072,190.5,0.29999999999999843,0.2902857142857143,0.35733333333333334 +69.342,205.74,-0.8571428571428586,0.43542857142857144,0.337037037037037 +73.40599999999999,228.6,-0.9142857142857156,0.9434285714285714,0.32111111111111107 +74.422,233.68,-0.7285714285714298,1.0522857142857143,0.3184782608695652 +75.946,236.22,-1.2571428571428584,1.1974285714285717,0.321505376344086 +78.232,243.84,-2.100000000000001,1.4877142857142858,0.3208333333333333 +79.756,243.84,-3.114285714285715,1.7054285714285715,0.32708333333333334 +80.26400000000001,243.84,-3.8285714285714296,1.7417142857142858,0.3291666666666667 +80.26400000000001,241.3,-4.128571428571429,1.5602857142857143,0.33263157894736844 +80.772,241.3,-4.442857142857144,1.0522857142857143,0.33473684210526317 +83.312,259.08,-3.9714285714285724,1.27,0.3215686274509804 +84.582,256.54,-4.2857142857142865,1.2337142857142855,0.32970297029702966 +84.836,254.0,-5.028571428571429,0.9434285714285716,0.334 +84.836,248.92000000000002,-5.171428571428572,0.7257142857142858,0.3408163265306122 +84.836,246.38,-4.757142857142858,0.6531428571428572,0.3443298969072165 +85.09,243.84,-3.7428571428571438,0.6894285714285715,0.3489583333333333 +85.09,238.76,-2.9857142857142867,0.6168571428571428,0.3563829787234043 +88.138,264.16,-2.5857142857142867,0.6894285714285715,0.33365384615384613 +89.15400000000001,264.16,-1.9857142857142864,0.6531428571428571,0.3375 +92.456,284.48,-1.2428571428571438,1.0885714285714285,0.325 +95.25,304.8,-0.8857142857142868,1.4877142857142858,0.3125 +96.774,304.8,-0.9142857142857153,1.7054285714285715,0.3175 +97.536,302.26,-1.5428571428571434,1.7780000000000002,0.3226890756302521 +98.298,292.1,-1.585714285714287,1.8868571428571428,0.33652173913043476 +98.04400000000001,287.02,-1.6285714285714297,1.4514285714285715,0.34159292035398237 +98.04400000000001,281.94,-1.8714285714285723,1.3062857142857143,0.3477477477477478 +99.82199999999999,304.8,-2.5142857142857156,1.0885714285714287,0.32749999999999996 +99.82199999999999,289.56,-2.9571428571428586,0.6894285714285715,0.3447368421052631 +99.82199999999999,284.48,-3.0142857142857156,0.47171428571428564,0.35089285714285706 +100.076,279.4,-2.385714285714287,0.3991428571428571,0.3581818181818182 +100.076,271.78000000000003,-1.7142857142857153,0.3991428571428571,0.3682242990654205 +100.076,266.7,-0.8000000000000013,0.43542857142857144,0.3752380952380952 +99.82199999999999,264.16,0.01428571428571322,0.43542857142857144,0.3778846153846153 +100.076,259.08,0.6142857142857133,0.21771428571428572,0.3862745098039216 +100.076,256.54,1.3142857142857132,0.21771428571428572,0.39009900990099006 +99.56800000000001,254.0,1.9142857142857135,0.21771428571428572,0.39200000000000007 +99.56800000000001,248.92000000000002,2.228571428571428,0.18142857142857144,0.4 +100.33,246.38,1.8142857142857132,0.18142857142857144,0.4072164948453608 +100.33,243.84,0.9285714285714274,0.21771428571428572,0.4114583333333333 +100.33,241.3,0.6714285714285702,0.21771428571428572,0.4157894736842105 +100.83800000000001,236.22,1.0428571428571414,0.32657142857142857,0.4268817204301076 +98.806,231.14000000000001,1.5857142857142847,0.32657142857142857,0.42747252747252745 +94.996,226.06,2.499999999999999,0.32657142857142857,0.4202247191011236 +90.93199999999999,218.44,3.614285714285713,0.32657142857142857,0.41627906976744183 +86.86800000000001,210.82,5.257142857142855,0.254,0.4120481927710844 +84.074,205.74,6.371428571428571,0.18142857142857144,0.40864197530864194 +82.29599999999999,200.66,7.014285714285713,0.254,0.410126582278481 +81.78800000000001,200.66,6.757142857142857,0.14514285714285716,0.4075949367088608 +81.78800000000001,198.12,6.099999999999999,0.14514285714285716,0.41282051282051285 +80.772,195.58,5.442857142857142,0.18142857142857144,0.412987012987013 +79.50200000000001,193.04,4.699999999999998,0.18142857142857144,0.41184210526315795 +80.01,195.58,2.9999999999999987,0.2902857142857143,0.4090909090909091 +80.01,193.04,1.7714285714285698,0.32657142857142857,0.4144736842105264 +79.756,193.04,0.9857142857142843,0.254,0.4131578947368421 +81.28,203.2,0.914285714285713,0.47171428571428564,0.4 +81.534,200.66,0.7857142857142844,0.508,0.4063291139240507 +81.534,198.12,0.09999999999999888,0.508,0.4115384615384616 +81.026,195.58,-0.28571428571428686,0.508,0.41428571428571426 +79.248,190.5,0.5571428571428564,0.3628571428571429,0.41600000000000004 +77.724,185.42000000000002,1.9571428571428562,0.3265714285714285,0.4191780821917808 +77.216,185.42000000000002,2.042857142857142,0.3265714285714285,0.4164383561643835 +76.2,182.88,2.057142857142856,0.07257142857142858,0.4166666666666667 +74.676,177.8,2.685714285714284,0.03628571428571429,0.42 +73.152,172.72,3.77142857142857,0.0,0.4235294117647059 +71.37400000000001,167.64000000000001,4.942857142857142,0.0,0.4257575757575758 +69.088,162.56,5.857142857142856,0.0,0.42499999999999993 +66.29400000000001,157.48,6.528571428571427,0.0,0.420967741935484 +64.008,152.4,7.628571428571427,0.0,0.41999999999999993 +61.976,147.32,8.242857142857142,0.0,0.4206896551724138 +60.452000000000005,144.78,8.357142857142856,0.0,0.41754385964912283 +58.42,139.7,8.285714285714283,0.0,0.4181818181818182 +55.88,134.62,7.6999999999999975,0.03628571428571429,0.41509433962264153 +53.594,127.0,6.557142857142856,0.10885714285714286,0.422 +52.577999999999996,127.0,4.914285714285713,0.14514285714285716,0.414 +51.562000000000005,124.46000000000001,3.999999999999999,0.18142857142857144,0.4142857142857143 +51.562000000000005,124.46000000000001,3.599999999999999,0.254,0.4142857142857143 +50.292,121.92,3.6285714285714286,0.2902857142857143,0.41250000000000003 +48.514,119.38,3.5714285714285716,0.2902857142857143,0.4063829787234043 +45.212,111.76,3.4428571428571426,0.254,0.40454545454545454 +42.925999999999995,104.14,3.314285714285714,0.18142857142857144,0.41219512195121943 +40.386,99.06,3.7857142857142856,0.14514285714285716,0.4076923076923077 +37.846000000000004,93.98,4.742857142857142,0.10885714285714286,0.4027027027027027 +35.306000000000004,86.36,5.6428571428571415,0.07257142857142858,0.40882352941176475 +31.242,78.74,6.457142857142856,0.03628571428571429,0.3967741935483871 +27.432000000000002,71.12,6.3999999999999995,0.03628571428571429,0.38571428571428573 +25.146,66.04,6.299999999999999,0.03628571428571429,0.38076923076923075 +23.622000000000003,63.5,6.414285714285713,0.254,0.37200000000000005 +23.114,63.5,5.828571428571427,0.32657142857142857,0.364 +21.336000000000002,58.42,4.857142857142856,0.32657142857142857,0.3652173913043478 +20.573999999999998,55.88,4.057142857142856,0.39914285714285713,0.3681818181818181 +18.796000000000003,50.8,2.8142857142857127,0.43542857142857144,0.37000000000000005 +18.034,50.8,2.242857142857141,0.43542857142857144,0.355 +13.97,45.72,2.399999999999998,0.43542857142857144,0.3055555555555556 +10.414,35.56,3.114285714285713,0.254,0.2928571428571428 +6.604,25.4,4.27142857142857,0.18142857142857144,0.26 +3.048,12.7,-1.1857142857142868,0.5442857142857143,0.24000000000000002 +3.302,20.32,-0.24285714285714372,0.43542857142857144,0.1625 +6.096,40.64,-0.07142857142857229,0.6168571428571429,0.15 +11.684,68.58,-0.014285714285715234,1.3425714285714287,0.17037037037037037 +12.446000000000002,71.12,-0.10000000000000082,1.5602857142857143,0.17500000000000002 +13.97,78.74,-0.6000000000000009,1.7780000000000002,0.1774193548387097 +13.97,71.12,-0.9000000000000006,1.7780000000000002,0.19642857142857142 +15.24,58.42,-0.9000000000000006,2.0320000000000005,0.2608695652173913 +14.732,60.96,-1.0714285714285723,1.9231428571428573,0.24166666666666664 +14.478000000000002,58.42,-1.4857142857142864,1.5240000000000002,0.24782608695652175 +14.732,58.42,-2.1857142857142864,0.7619999999999999,0.25217391304347825 +14.732,55.88,-1.7571428571428578,0.5442857142857143,0.2636363636363636 +14.986,60.96,-1.028571428571429,0.3628571428571429,0.24583333333333335 +15.748000000000001,63.5,-0.47142857142857203,0.47171428571428564,0.24800000000000003 +17.018,76.2,-0.5714285714285724,0.39914285714285713,0.22333333333333333 +18.288,83.82000000000001,-0.5142857142857153,0.5442857142857143,0.21818181818181817 +19.812,91.44,-0.08571428571428664,0.7619999999999999,0.21666666666666667 +20.066000000000003,93.98,0.42857142857142755,0.7620000000000001,0.21351351351351353 +21.843999999999998,96.52,0.27142857142857063,1.0159999999999998,0.2263157894736842 +21.336000000000002,93.98,-0.5857142857142865,1.0885714285714285,0.22702702702702704 +22.86,111.76,-1.1857142857142864,1.1974285714285713,0.20454545454545453 +24.637999999999998,124.46000000000001,-1.9000000000000004,1.3062857142857143,0.19795918367346935 +24.637999999999998,116.84,-2.628571428571429,1.1611428571428573,0.21086956521739128 +24.892000000000003,111.76,-2.585714285714286,0.9797142857142856,0.22272727272727275 +24.892000000000003,109.22,-2.471428571428572,0.9434285714285714,0.22790697674418608 +24.637999999999998,106.68,-2.8714285714285723,0.7257142857142858,0.2309523809523809 +24.637999999999998,96.52,-2.9857142857142867,0.6168571428571428,0.25526315789473686 +24.637999999999998,99.06,-3.2142857142857153,0.39914285714285713,0.2487179487179487 +24.637999999999998,99.06,-3.400000000000001,0.10885714285714286,0.2487179487179487 +25.654,114.3,-3.5428571428571436,0.21771428571428572,0.22444444444444445 +29.21,142.24,-3.9857142857142867,0.6894285714285714,0.20535714285714285 +31.496000000000002,147.32,-4.8571428571428585,1.0522857142857143,0.2137931034482759 +31.75,142.24,-5.842857142857143,1.0522857142857143,0.2232142857142857 +34.544,162.56,-5.9142857142857155,1.4514285714285715,0.21249999999999997 +36.068,162.56,-5.871428571428573,1.6691428571428573,0.221875 +36.83,162.56,-5.700000000000001,1.7780000000000002,0.2265625 +38.1,167.64000000000001,-5.2285714285714295,1.8868571428571428,0.22727272727272727 +39.37,172.72,-5.342857142857143,1.5602857142857143,0.22794117647058823 +39.37,167.64000000000001,-5.2857142857142865,1.1974285714285713,0.2348484848484848 +41.402,180.34,-4.942857142857144,1.4514285714285715,0.2295774647887324 +41.402,175.26,-4.700000000000001,1.0885714285714287,0.23623188405797102 +41.402,170.18,-4.685714285714286,0.8708571428571429,0.24328358208955222 +41.147999999999996,165.1,-5.071428571428572,0.7619999999999999,0.24923076923076923 +41.656,167.64000000000001,-5.242857142857145,0.5805714285714286,0.24848484848484845 +41.656,162.56,-5.442857142857144,0.39914285714285713,0.25625 +41.656,160.02,-5.271428571428573,0.3991428571428572,0.2603174603174603 +41.656,157.48,-5.171428571428573,0.1451428571428572,0.2645161290322581 +41.656,154.94,-5.100000000000001,0.10885714285714292,0.26885245901639343 +41.910000000000004,154.94,-4.742857142857145,0.1451428571428572,0.27049180327868855 +42.164,152.4,-3.828571428571429,0.1814285714285715,0.27666666666666667 +42.418,152.4,-3.3285714285714296,0.1451428571428572,0.2783333333333333 +42.418,152.4,-2.7142857142857153,0.1814285714285715,0.2783333333333333 +43.434000000000005,157.48,-2.171428571428572,0.3265714285714286,0.2758064516129033 +44.196,157.48,-1.4714285714285726,0.3991428571428572,0.2806451612903226 +44.45,147.32,-1.4714285714285722,0.5080000000000001,0.30172413793103453 +44.45,154.94,-2.285714285714287,0.4717142857142858,0.2868852459016394 +44.196,154.94,-3.785714285714287,0.4354285714285715,0.28524590163934427 +44.45,152.4,-4.942857142857144,0.4354285714285715,0.2916666666666667 +44.45,152.4,-5.728571428571429,0.3991428571428572,0.2916666666666667 +44.70400000000001,149.86,-5.614285714285715,0.29028571428571437,0.2983050847457627 +44.70400000000001,147.32,-4.671428571428572,0.1814285714285715,0.303448275862069 +44.70400000000001,147.32,-3.285714285714286,0.07257142857142863,0.303448275862069 +44.70400000000001,144.78,-1.2857142857142865,0.07257142857142863,0.3087719298245615 +44.70400000000001,144.78,1.2714285714285707,0.07257142857142863,0.3087719298245615 +44.958,142.24,3.657142857142857,0.07257142857142863,0.31607142857142856 +44.70400000000001,142.24,5.328571428571428,0.07257142857142863,0.31428571428571433 +44.70400000000001,139.7,5.928571428571429,0.03628571428571435,0.32000000000000006 +44.958,139.7,5.742857142857142,0.07257142857142863,0.32181818181818184 +44.958,142.24,4.914285714285714,0.10885714285714292,0.31607142857142856 +45.212,142.24,3.8714285714285706,0.1451428571428572,0.31785714285714284 +45.212,139.7,2.8999999999999995,0.1451428571428572,0.32363636363636367 +45.465999999999994,142.24,1.3285714285714276,0.1814285714285715,0.31964285714285706 +45.465999999999994,144.78,0.07142857142857016,0.1814285714285715,0.3140350877192982 +46.228,144.78,-1.1857142857142868,0.29028571428571437,0.3192982456140351 +47.752,152.4,-2.0714285714285725,0.4717142857142858,0.31333333333333335 +47.752,147.32,-2.02857142857143,0.4354285714285715,0.3241379310344828 +47.752,144.78,-1.8285714285714298,0.3991428571428572,0.3298245614035088 +47.752,144.78,-1.7142857142857157,0.3991428571428572,0.3298245614035088 +47.752,144.78,-0.7571428571428586,0.3265714285714286,0.3298245614035088 +47.752,142.24,0.37142857142856983,0.3265714285714286,0.3357142857142857 +47.752,142.24,1.1142857142857123,0.25400000000000006,0.3357142857142857 +48.006,144.78,1.099999999999998,0.07257142857142863,0.33157894736842103 +48.26,144.78,0.6571428571428555,0.10885714285714292,0.3333333333333333 +48.26,147.32,-0.10000000000000155,0.1451428571428572,0.3275862068965517 +48.514,144.78,-0.8428571428571442,0.1814285714285715,0.33508771929824566 +48.514,144.78,-1.3571428571428583,0.1814285714285715,0.33508771929824566 +48.514,144.78,-1.6714285714285728,0.1814285714285715,0.33508771929824566 +48.514,144.78,-1.742857142857144,0.1451428571428572,0.33508771929824566 +48.514,142.24,-1.6142857142857157,0.10885714285714292,0.3410714285714286 +48.514,142.24,-1.4571428571428584,0.07257142857142863,0.3410714285714286 +48.514,142.24,-0.571428571428573,0.03628571428571435,0.3410714285714286 +48.768,139.7,0.328571428571427,0.03628571428571435,0.3490909090909091 +48.768,142.24,0.3428571428571416,0.07257142857142863,0.34285714285714286 +48.768,139.7,-0.44285714285714406,0.10885714285714292,0.3490909090909091 +48.768,139.7,-1.2142857142857153,0.10885714285714292,0.3490909090909091 +48.514,139.7,-1.985714285714287,0.10885714285714292,0.34727272727272734 +48.768,139.7,-2.4571428571428586,0.1451428571428572,0.3490909090909091 +49.275999999999996,142.24,-3.2000000000000015,0.21771428571428578,0.34642857142857136 +50.546,152.4,-4.000000000000002,0.36285714285714293,0.33166666666666667 +51.054,154.94,-4.700000000000002,0.3991428571428572,0.3295081967213115 +51.308,152.4,-4.52857142857143,0.3991428571428572,0.33666666666666667 +52.577999999999996,165.1,-4.52857142857143,0.5805714285714286,0.31846153846153846 +52.832,162.56,-4.157142857142858,0.6168571428571429,0.325 +53.086,160.02,-3.7142857142857153,0.6168571428571428,0.33174603174603173 +53.848,160.02,-2.971428571428573,0.6894285714285715,0.3365079365079365 +53.848,152.4,-1.9571428571428586,0.5442857142857144,0.35333333333333333 +53.848,149.86,-0.7571428571428592,0.5080000000000001,0.359322033898305 +53.848,152.4,-1.0142857142857162,0.5080000000000001,0.35333333333333333 +54.102000000000004,154.94,-1.157142857142859,0.36285714285714293,0.3491803278688525 +54.355999999999995,162.56,-1.4428571428571446,0.4354285714285715,0.334375 +55.626,170.18,-1.7000000000000017,0.5805714285714286,0.32686567164179103 +56.13400000000001,170.18,-2.32857142857143,0.5442857142857144,0.32985074626865674 +56.13400000000001,170.18,-3.2571428571428584,0.5080000000000001,0.32985074626865674 +56.13400000000001,167.64000000000001,-3.514285714285716,0.4717142857142858,0.33484848484848484 +56.13400000000001,162.56,-2.557142857142859,0.4354285714285715,0.3453125 +56.642,167.64000000000001,-1.571428571428573,0.4717142857142858,0.3378787878787879 +56.642,162.56,-0.44285714285714445,0.3991428571428572,0.3484375 +56.388,157.48,0.67142857142857,0.21771428571428578,0.3580645161290323 +56.13400000000001,154.94,1.7999999999999987,0.10885714285714292,0.36229508196721316 +56.388,154.94,2.499999999999999,0.1451428571428572,0.36393442622950817 +57.15,160.02,2.099999999999999,0.29028571428571437,0.3571428571428571 +58.166,167.64000000000001,1.0571428571428558,0.4354285714285715,0.34696969696969693 +58.67400000000001,167.64000000000001,0.31428571428571345,0.4354285714285715,0.35000000000000003 +60.452000000000005,177.8,-0.4857142857142864,0.6531428571428571,0.34 +62.992000000000004,198.12,-1.4285714285714295,1.016,0.317948717948718 +64.262,205.74,-3.014285714285715,1.1974285714285713,0.31234567901234567 +64.262,198.12,-4.371428571428573,1.1611428571428573,0.3243589743589744 +64.008,198.12,-5.071428571428572,1.016,0.32307692307692304 +64.008,193.04,-5.057142857142858,0.8708571428571429,0.33157894736842103 +64.008,190.5,-4.814285714285716,0.7982857142857142,0.33599999999999997 +63.5,185.42000000000002,-4.142857142857144,0.5442857142857143,0.3424657534246575 +63.754000000000005,180.34,-3.6857142857142873,0.21771428571428572,0.3535211267605634 +63.5,180.34,-2.5142857142857156,0.03628571428571429,0.352112676056338 +63.245999999999995,175.26,-0.9428571428571441,0.03628571428571429,0.3608695652173913 +62.484,170.18,0.5999999999999988,0.07257142857142858,0.36716417910447763 +61.467999999999996,167.64000000000001,2.1714285714285704,0.07257142857142858,0.3666666666666666 +61.214000000000006,165.1,3.442857142857142,0.07257142857142858,0.3707692307692308 +61.467999999999996,160.02,3.7857142857142847,0.10885714285714286,0.3841269841269841 +60.705999999999996,157.48,4.485714285714285,0.07257142857142858,0.38548387096774195 +62.230000000000004,154.94,4.7142857142857135,0.2902857142857143,0.40163934426229514 +60.452000000000005,152.4,4.457142857142856,0.32657142857142857,0.39666666666666667 +60.198,154.94,3.7999999999999994,0.43542857142857144,0.3885245901639344 +62.230000000000004,172.72,2.7999999999999994,0.7619999999999999,0.3602941176470589 +62.230000000000004,162.56,1.7285714285714275,0.7619999999999999,0.3828125 +62.230000000000004,160.02,1.414285714285713,0.7257142857142858,0.3888888888888889 +63.5,154.94,0.7857142857142849,0.9071428571428573,0.4098360655737705 +62.738,154.94,0.17142857142857082,0.7257142857142858,0.40491803278688526 +61.976,154.94,-0.14285714285714354,0.7257142857142858,0.4 +63.245999999999995,170.18,-0.757142857142858,0.7619999999999999,0.37164179104477607 +63.5,162.56,-1.0714285714285723,0.4717142857142857,0.390625 +63.5,157.48,-1.5285714285714291,0.4717142857142857,0.40322580645161293 +63.754000000000005,162.56,-2.4285714285714297,0.508,0.3921875 +63.5,160.02,-2.885714285714286,0.32657142857142857,0.3968253968253968 +64.008,157.48,-2.5000000000000004,0.3628571428571429,0.4064516129032258 +64.008,154.94,-2.1571428571428575,0.3628571428571429,0.4131147540983606 +64.77,154.94,-1.3857142857142861,0.2902857142857143,0.41803278688524587 +64.008,152.4,-0.8571428571428578,0.2902857142857143,0.41999999999999993 +63.754000000000005,152.4,-0.30000000000000077,0.2902857142857143,0.41833333333333333 +63.245999999999995,149.86,0.5999999999999991,0.254,0.4220338983050847 +63.754000000000005,147.32,1.5714285714285707,0.32657142857142857,0.4327586206896552 +62.992000000000004,142.24,2.457142857142856,0.254,0.44285714285714284 +60.452000000000005,139.7,3.5999999999999988,0.21771428571428572,0.4327272727272728 +58.42,137.16,4.199999999999998,0.10885714285714286,0.42592592592592593 +57.404,134.62,4.499999999999999,0.14514285714285716,0.42641509433962266 +57.15,137.16,4.257142857142857,0.21771428571428572,0.4166666666666667 +57.658,134.62,3.5285714285714276,0.2902857142857143,0.42830188679245285 +56.13400000000001,132.08,2.985714285714285,0.21771428571428572,0.425 +55.626,127.0,2.9142857142857137,0.21771428571428572,0.438 +54.355999999999995,121.92,2.714285714285713,0.21771428571428572,0.4458333333333333 +50.8,119.38,3.142857142857142,0.21771428571428572,0.425531914893617 +48.006,111.76,4.17142857142857,0.14514285714285716,0.4295454545454545 +45.212,106.68,6.228571428571428,0.07257142857142858,0.4238095238095238 +42.418,99.06,8.414285714285715,0.0,0.4282051282051282 +39.37,88.9,9.985714285714284,0.0,0.4428571428571428 +36.576,81.28,10.885714285714284,0.0,0.45 +33.274,76.2,11.928571428571429,0.0,0.43666666666666665 +29.718,68.58,12.9,0.0,0.43333333333333335 +26.416,60.96,13.0,0.07257142857142858,0.43333333333333335 +24.384,58.42,11.814285714285713,0.14514285714285716,0.41739130434782606 +22.86,53.34,10.557142857142859,0.14514285714285716,0.42857142857142855 +21.59,53.34,9.357142857142858,0.18142857142857144,0.4047619047619047 +20.066000000000003,38.1,8.028571428571428,0.21771428571428572,0.5266666666666667 +19.05,43.18,6.2714285714285705,0.2902857142857143,0.44117647058823534 +17.526,43.18,4.528571428571428,0.2902857142857143,0.40588235294117647 +14.732,35.56,3.7285714285714278,0.21771428571428572,0.41428571428571426 +11.43,33.02,4.285714285714285,0.14514285714285716,0.3461538461538461 +9.652,38.1,4.142857142857142,0.254,0.2533333333333333 +12.192,45.72,3.3571428571428563,0.5805714285714286,0.26666666666666666 +12.7,40.64,2.77142857142857,0.6168571428571428,0.3125 +12.7,40.64,2.485714285714285,0.6168571428571428,0.3125 +12.446000000000002,38.1,2.5999999999999988,0.6168571428571428,0.3266666666666667 +11.684,33.02,2.5714285714285707,0.6531428571428571,0.3538461538461538 +11.43,33.02,1.8714285714285706,0.6894285714285715,0.3461538461538461 +9.652,27.94,2.042857142857142,0.5805714285714286,0.3454545454545454 +8.636,22.86,2.6285714285714272,0.254,0.37777777777777777 +5.842,15.24,2.9285714285714275,0.18142857142857144,0.3833333333333333 +3.048,10.16,2.0428571428571414,1.4514285714285715,0.3 +3.048,10.16,0.07142857142856962,0.7257142857142858,0.3 +3.048,12.7,-0.7428571428571447,0.7620000000000002,0.24000000000000002 +3.302,15.24,-0.7714285714285735,0.39914285714285713,0.21666666666666667 +3.302,10.16,0.39999999999999813,0.3628571428571429,0.325 +3.302,10.16,1.085714285714284,0.3628571428571429,0.325 +3.048,10.16,1.4428571428571413,0.39914285714285713,0.3 +3.048,7.62,1.599999999999998,0.3628571428571429,0.4 +4.064,15.24,1.4285714285714268,0.32657142857142857,0.26666666666666666 +4.826,17.78,1.0142857142857125,0.39914285714285713,0.2714285714285714 +5.842,20.32,0.2714285714285694,0.5442857142857143,0.2875 +6.096,22.86,0.2571428571428551,0.5442857142857143,0.26666666666666666 +5.842,20.32,-0.31428571428571594,0.5442857142857143,0.2875 +5.08,20.32,-1.771428571428573,0.5442857142857143,0.25 +5.08,20.32,-2.885714285714287,0.508,0.25 +5.3340000000000005,20.32,-2.9285714285714297,0.3628571428571429,0.2625 +5.842,20.32,-2.314285714285716,0.32657142857142857,0.2875 +6.35,20.32,-1.285714285714287,0.254,0.3125 +6.604,20.32,-0.7285714285714299,0.254,0.325 +6.604,22.86,-0.14285714285714407,0.21771428571428572,0.2888888888888889 +6.604,20.32,1.2571428571428558,0.21771428571428572,0.325 +6.604,20.32,2.757142857142856,0.21771428571428572,0.325 +7.111999999999999,22.86,3.557142857142856,0.254,0.31111111111111106 +7.8740000000000006,12.7,3.7999999999999985,0.2902857142857143,0.6200000000000001 +14.478000000000002,43.18,3.07142857142857,1.1611428571428573,0.33529411764705885 +14.986,50.8,1.3285714285714276,1.3062857142857143,0.29500000000000004 +14.986,48.26,-0.7142857142857155,1.3062857142857143,0.3105263157894737 +14.986,43.18,-3.12857142857143,1.3062857142857143,0.3470588235294118 +15.24,45.72,-5.771428571428572,1.3425714285714285,0.33333333333333337 +16.002,50.8,-8.72857142857143,1.3788571428571428,0.315 +15.748000000000001,53.34,-11.685714285714287,1.27,0.29523809523809524 +15.748000000000001,50.8,-13.22857142857143,0.3628571428571429,0.31000000000000005 +15.748000000000001,50.8,-12.971428571428573,0.18142857142857144,0.31000000000000005 +15.494,48.26,-12.22857142857143,0.2902857142857143,0.32105263157894737 +15.24,48.26,-10.257142857142858,0.2902857142857143,0.31578947368421056 +15.24,48.26,-8.057142857142859,0.254,0.31578947368421056 +15.494,48.26,-5.457142857142858,0.18142857142857144,0.32105263157894737 +15.748000000000001,48.26,-2.257142857142859,0.21771428571428572,0.3263157894736842 +15.748000000000001,48.26,-0.5857142857142872,0.18142857142857144,0.3263157894736842 +15.748000000000001,48.26,0.6142857142857127,0.18142857142857144,0.3263157894736842 +15.748000000000001,48.26,2.128571428571427,0.07257142857142858,0.3263157894736842 +15.494,45.72,1.7714285714285698,0.10885714285714286,0.3388888888888889 +14.732,45.72,0.8285714285714266,0.10885714285714286,0.3222222222222222 +14.732,48.26,0.6142857142857127,0.10885714285714286,0.30526315789473685 +15.24,48.26,-0.07142857142857346,0.14514285714285716,0.31578947368421056 +15.748000000000001,48.26,-0.1428571428571448,0.21771428571428572,0.3263157894736842 +16.51,50.8,-0.6285714285714302,0.3628571428571429,0.32500000000000007 +16.764,50.8,-1.571428571428573,0.39914285714285713,0.33 +16.51,50.8,-0.31428571428571594,0.3628571428571429,0.32500000000000007 +16.256,50.8,1.4571428571428553,0.3628571428571429,0.32 +16.002,50.8,2.17142857142857,0.32657142857142857,0.315 +16.002,50.8,2.2999999999999985,0.254,0.315 +15.748000000000001,50.8,2.5571428571428556,0.18142857142857144,0.31000000000000005 +16.51,50.8,3.142857142857141,0.14514285714285716,0.32500000000000007 +17.018,50.8,3.328571428571427,0.18142857142857144,0.335 +17.272,50.8,2.9285714285714266,0.21771428571428572,0.33999999999999997 +17.526,50.8,2.6285714285714272,0.254,0.34500000000000003 +17.272,53.34,1.314285714285713,0.2902857142857143,0.32380952380952377 +17.018,53.34,0.8714285714285702,0.2902857142857143,0.319047619047619 +16.002,53.34,0.11428571428571341,0.2902857142857143,0.29999999999999993 +16.002,53.34,-1.2688263138573218e-15,0.18142857142857144,0.29999999999999993 +17.272,53.34,0.15714285714285564,0.2902857142857143,0.32380952380952377 +18.796000000000003,68.58,-0.2428571428571443,0.4717142857142857,0.27407407407407414 +19.304,68.58,-1.2571428571428587,0.5442857142857143,0.28148148148148144 +19.558,66.04,-0.6142857142857158,0.5442857142857143,0.2961538461538461 +22.86,96.52,-0.4142857142857158,1.0522857142857143,0.2368421052631579 +24.13,101.6,-0.4000000000000015,1.3062857142857143,0.23750000000000002 +24.384,93.98,-0.9000000000000014,1.3425714285714285,0.2594594594594595 +24.384,93.98,-0.5428571428571441,1.1611428571428573,0.2594594594594595 +24.384,88.9,0.12857142857142737,0.9797142857142855,0.2742857142857143 +24.13,86.36,1.2428571428571416,0.8708571428571428,0.27941176470588236 +24.13,86.36,2.4571428571428555,0.8345714285714284,0.27941176470588236 +24.384,83.82000000000001,3.6571428571428557,0.3628571428571429,0.2909090909090909 +24.13,83.82000000000001,4.471428571428571,0.10885714285714286,0.28787878787878785 +24.13,83.82000000000001,4.599999999999999,0.07257142857142858,0.28787878787878785 +24.13,83.82000000000001,4.842857142857142,0.07257142857142858,0.28787878787878785 +24.13,81.28,4.37142857142857,0.03628571428571429,0.296875 +23.876,81.28,3.4428571428571417,0.03628571428571429,0.29375 +24.13,81.28,2.8285714285714265,0.07257142857142858,0.296875 +24.384,81.28,2.828571428571427,0.07257142857142858,0.3 +24.13,81.28,3.142857142857141,0.07257142857142858,0.296875 +24.13,81.28,2.999999999999998,0.07257142857142858,0.296875 +24.637999999999998,78.74,2.628571428571427,0.14514285714285716,0.31290322580645163 +26.416,93.98,2.47142857142857,0.4717142857142857,0.2810810810810811 +26.416,91.44,2.142857142857141,0.508,0.2888888888888889 +26.67,91.44,1.0714285714285703,0.508,0.2916666666666667 +26.416,88.9,-0.7000000000000013,0.4717142857142857,0.29714285714285715 +26.67,91.44,-2.571428571428573,0.508,0.2916666666666667 +26.924,104.14,-3.7714285714285727,0.5805714285714286,0.25853658536585367 +27.177999999999997,101.6,-6.314285714285716,0.5442857142857143,0.2675 +27.177999999999997,101.6,-9.385714285714288,0.21771428571428572,0.2675 +28.194,106.68,-11.771428571428572,0.32657142857142857,0.26428571428571423 +28.702,106.68,-12.6,0.39914285714285713,0.26904761904761904 +30.48,137.16,-13.714285714285714,0.7257142857142858,0.22222222222222224 +30.988,127.0,-13.185714285714287,0.7620000000000001,0.244 +31.75,124.46000000000001,-11.98571428571429,0.7982857142857144,0.25510204081632654 +34.036,137.16,-9.928571428571429,1.0885714285714285,0.24814814814814817 +35.306000000000004,132.08,-6.771428571428572,1.27,0.2673076923076923 +36.322,137.16,-4.100000000000002,1.27,0.26481481481481484 +37.846000000000004,147.32,-2.9428571428571444,1.415142857142857,0.25689655172413794 +40.894000000000005,167.64000000000001,-1.4285714285714304,1.5239999999999998,0.24393939393939396 +42.164,172.72,-1.571428571428573,1.632857142857143,0.24411764705882355 +44.958,198.12,-1.9571428571428586,1.9594285714285715,0.22692307692307692 +46.99,205.74,-2.314285714285716,1.923142857142857,0.22839506172839505 +48.514,200.66,-3.22857142857143,1.9957142857142856,0.2417721518987342 +50.546,213.36,-3.442857142857144,2.140857142857143,0.2369047619047619 +50.546,203.2,-3.871428571428573,1.8868571428571432,0.24875 +50.8,198.12,-4.185714285714288,1.4877142857142858,0.2564102564102564 +50.8,193.04,-3.6714285714285735,1.3062857142857143,0.2631578947368421 +50.546,193.04,-3.1857142857142873,0.9797142857142856,0.2618421052631579 +51.308,187.96,-3.1857142857142877,0.7982857142857144,0.27297297297297296 +51.815999999999995,182.88,-2.400000000000002,0.6168571428571428,0.2833333333333333 +51.562000000000005,177.8,-1.5857142857142874,0.32657142857142857,0.29000000000000004 +51.815999999999995,172.72,-1.185714285714287,0.3628571428571429,0.3 +51.562000000000005,172.72,-1.4571428571428584,0.3628571428571429,0.29852941176470593 +54.102000000000004,190.5,-1.4142857142857153,0.7257142857142858,0.28400000000000003 +55.626,195.58,-1.4571428571428584,0.8345714285714285,0.2844155844155844 +55.88,190.5,-0.885714285714287,0.7619999999999999,0.29333333333333333 +56.642,175.26,-0.42857142857143,1.1611428571428573,0.3231884057971015 +57.15,180.34,-0.7142857142857159,1.3425714285714285,0.3169014084507042 +57.658,175.26,-0.47142857142857303,1.378857142857143,0.3289855072463768 +58.42,167.64000000000001,0.999999999999998,1.5239999999999998,0.34848484848484845 +56.13400000000001,165.1,1.4142857142857121,1.1974285714285713,0.3400000000000001 +56.388,162.56,1.2285714285714264,1.016,0.346875 +56.388,160.02,1.028571428571427,0.9797142857142858,0.35238095238095235 +56.895999999999994,160.02,1.0142857142857125,0.5805714285714286,0.3555555555555555 +56.895999999999994,160.02,1.499999999999998,0.39914285714285713,0.3555555555555555 +58.166,165.1,1.4857142857142838,0.508,0.3523076923076923 +58.42,160.02,1.499999999999998,0.3628571428571429,0.36507936507936506 +57.404,165.1,1.4571428571428553,0.43542857142857144,0.34769230769230774 +58.67400000000001,167.64000000000001,0.9428571428571411,0.5805714285714286,0.35000000000000003 +58.928,165.1,0.8285714285714265,0.6168571428571428,0.3569230769230769 +59.182,165.1,0.17142857142856963,0.6168571428571428,0.3584615384615385 +59.182,165.1,-1.0428571428571445,0.6168571428571428,0.3584615384615385 +58.928,165.1,-1.6571428571428588,0.43542857142857144,0.3569230769230769 +58.42,165.1,-2.4142857142857155,0.39914285714285713,0.35384615384615387 +57.912000000000006,165.1,-2.671428571428573,0.2902857142857143,0.35076923076923083 +57.658,162.56,-1.7142857142857157,0.10885714285714286,0.3546875 +58.166,170.18,-1.4714285714285729,0.14514285714285716,0.3417910447761194 +58.42,167.64000000000001,-1.414285714285716,0.10885714285714286,0.34848484848484845 +58.67400000000001,170.18,-0.8714285714285729,0.14514285714285716,0.3447761194029851 +58.928,172.72,-0.22857142857142998,0.254,0.3411764705882353 +59.436,177.8,-0.11428571428571588,0.32657142857142857,0.33428571428571424 +59.182,177.8,-0.5428571428571444,0.3628571428571429,0.33285714285714285 +58.67400000000001,177.8,-1.0857142857142876,0.3628571428571429,0.33 +58.166,177.8,-1.114285714285716,0.2902857142857143,0.3271428571428571 +57.912000000000006,175.26,-0.9428571428571446,0.254,0.3304347826086957 +57.912000000000006,172.72,-0.7571428571428589,0.21771428571428572,0.33529411764705885 +57.658,172.72,-0.8714285714285733,0.14514285714285716,0.33382352941176474 +57.658,177.8,-0.657142857142859,0.10885714285714286,0.3242857142857143 +57.404,167.64000000000001,0.1142857142857123,0.07257142857142858,0.3424242424242424 +56.895999999999994,165.1,1.4285714285714268,0.07257142857142858,0.3446153846153846 +56.388,160.02,2.299999999999998,0.10885714285714286,0.35238095238095235 +56.388,160.02,2.542857142857141,0.10885714285714286,0.35238095238095235 +56.388,157.48,3.0999999999999988,0.10885714285714286,0.3580645161290323 +56.388,154.94,3.828571428571428,0.07257142857142858,0.36393442622950817 +56.13400000000001,152.4,4.0857142857142845,0.03628571428571429,0.36833333333333335 +56.13400000000001,152.4,3.9285714285714275,0.03628571428571429,0.36833333333333335 +55.626,147.32,3.485714285714285,0.03628571428571429,0.3775862068965517 +55.372,149.86,2.599999999999999,0.0,0.36949152542372876 +55.118,144.78,2.671428571428571,0.0,0.38070175438596493 +54.864000000000004,147.32,2.3714285714285706,0.07257142857142858,0.3724137931034483 +54.864000000000004,144.78,1.5857142857142847,0.10885714285714286,0.37894736842105264 +54.864000000000004,144.78,1.3571428571428559,0.14514285714285716,0.37894736842105264 +54.864000000000004,144.78,1.4428571428571415,0.14514285714285716,0.37894736842105264 +54.355999999999995,142.24,1.4571428571428557,0.18142857142857144,0.38214285714285706 +55.118,139.7,1.2571428571428558,0.2902857142857143,0.3945454545454546 +56.13400000000001,152.4,0.9428571428571414,0.43542857142857144,0.36833333333333335 +56.388,147.32,0.7714285714285697,0.4717142857142857,0.38275862068965516 +56.642,142.24,0.842857142857141,0.4717142857142857,0.3982142857142857 +56.13400000000001,147.32,0.6142857142857127,0.4717142857142857,0.3810344827586208 +56.895999999999994,154.94,-0.028571428571430437,0.6168571428571428,0.36721311475409835 +56.895999999999994,149.86,-0.5714285714285736,0.5805714285714286,0.37966101694915244 +56.895999999999994,147.32,0.25714285714285506,0.4717142857142857,0.38620689655172413 +56.13400000000001,142.24,1.2857142857142836,0.32657142857142857,0.3946428571428572 +54.355999999999995,137.16,2.9142857142857124,0.21771428571428572,0.39629629629629626 +52.324000000000005,129.54,4.485714285714285,0.18142857142857144,0.40392156862745104 +50.546,124.46000000000001,4.985714285714283,0.18142857142857144,0.4061224489795918 +49.53,121.92,5.528571428571427,0.07257142857142858,0.40625 +48.514,119.38,5.742857142857141,0.10885714285714286,0.4063829787234043 +47.752,116.84,5.414285714285713,0.10885714285714286,0.40869565217391307 +46.736,114.3,4.985714285714285,0.10885714285714286,0.40888888888888886 +45.72,114.3,3.699999999999999,0.18142857142857144,0.4 +45.465999999999994,114.3,2.27142857142857,0.254,0.39777777777777773 +44.958,111.76,1.9857142857142842,0.21771428571428572,0.4022727272727272 +44.70400000000001,109.22,2.2714285714285696,0.18142857142857144,0.4093023255813954 +42.925999999999995,104.14,2.6571428571428553,0.14514285714285716,0.41219512195121943 +40.386,101.6,3.528571428571426,0.14514285714285716,0.3975000000000001 +38.354,96.52,4.599999999999997,0.14514285714285716,0.3973684210526316 +35.814,88.9,6.028571428571426,0.07257142857142858,0.40285714285714286 +33.528,83.82000000000001,7.285714285714284,0.0,0.39999999999999997 +31.496000000000002,78.74,7.985714285714283,0.03628571428571429,0.4000000000000001 +29.718,73.66,7.985714285714283,0.03628571428571429,0.403448275862069 +28.447999999999997,73.66,7.942857142857141,0.03628571428571429,0.38620689655172413 +25.907999999999998,66.04,7.914285714285712,0.03628571428571429,0.39230769230769225 +22.86,60.96,7.6999999999999975,0.03628571428571429,0.375 +19.812,50.8,7.528571428571427,0.03628571428571429,0.39000000000000007 +16.256,43.18,7.457142857142855,0.07257142857142858,0.3764705882352941 +12.953999999999999,38.1,7.628571428571427,0.03628571428571429,0.33999999999999997 +11.176000000000002,30.48,8.085714285714284,0.03628571428571429,0.36666666666666675 +7.111999999999999,20.32,8.07142857142857,0.10885714285714286,0.35 +4.318,15.24,7.542857142857142,0.10885714285714286,0.2833333333333333 +4.826,15.24,-0.4428571428571441,0.6531428571428572,0.31666666666666665 +5.08,17.78,0.6142857142857131,0.6894285714285715,0.2857142857142857 +6.8580000000000005,33.02,0.7999999999999989,0.8708571428571429,0.20769230769230768 +7.8740000000000006,27.94,0.8714285714285701,0.9797142857142858,0.2818181818181818 +5.842,15.24,0.9428571428571415,1.2337142857142855,0.3833333333333333 +5.3340000000000005,12.7,1.1142857142857134,1.1974285714285717,0.42000000000000004 +4.572,10.16,1.3857142857142843,1.1611428571428573,0.45 +5.588000000000001,17.78,1.4428571428571415,0.9797142857142858,0.31428571428571433 +5.08,20.32,0.5285714285714275,0.9434285714285714,0.25 +5.3340000000000005,20.32,-0.9285714285714298,0.7257142857142858,0.2625 +5.588000000000001,17.78,-1.5142857142857153,0.6168571428571429,0.31428571428571433 +5.842,17.78,-2.9714285714285724,0.32657142857142857,0.3285714285714285 +6.096,17.78,-4.171428571428573,0.4717142857142857,0.34285714285714286 +6.096,17.78,-4.371428571428572,0.4717142857142857,0.34285714285714286 +6.35,15.24,-4.2285714285714295,0.2902857142857143,0.41666666666666663 +7.366,25.4,-2.914285714285715,0.43542857142857144,0.29 +7.366,20.32,-1.0142857142857153,0.43542857142857144,0.3625 +7.366,20.32,-0.15714285714285806,0.39914285714285713,0.3625 +7.62,15.24,1.1999999999999993,0.6894285714285715,0.5 +6.604,15.24,2.157142857142856,0.6531428571428571,0.43333333333333335 +8.382,20.32,1.999999999999999,0.9434285714285714,0.4125 +8.382,20.32,1.5571428571428556,0.9071428571428571,0.4125 +8.382,20.32,1.0999999999999985,0.7619999999999999,0.4125 +8.636,20.32,0.41428571428571326,0.7619999999999999,0.42499999999999993 +8.636,22.86,-0.6285714285714297,0.7619999999999999,0.37777777777777777 +8.89,22.86,-1.6714285714285728,0.4717142857142857,0.38888888888888895 +8.89,22.86,-2.2857142857142874,0.4717142857142857,0.38888888888888895 +9.398000000000001,25.4,-2.5142857142857156,0.254,0.37000000000000005 +9.398000000000001,33.02,-2.6285714285714294,0.254,0.28461538461538466 +12.7,48.26,-2.185714285714287,0.7619999999999999,0.2631578947368421 +13.97,48.26,-1.5857142857142872,1.0522857142857143,0.2894736842105263 +14.223999999999998,55.88,-1.1571428571428586,1.0885714285714285,0.2545454545454545 +14.223999999999998,50.8,-0.40000000000000124,1.0522857142857143,0.27999999999999997 +14.732,53.34,-0.6571428571428582,1.0159999999999998,0.27619047619047615 +14.478000000000002,53.34,-1.200000000000001,0.9434285714285713,0.27142857142857146 +14.478000000000002,50.8,-1.5142857142857156,0.9434285714285713,0.28500000000000003 +16.256,71.12,-1.8714285714285723,0.7257142857142858,0.22857142857142856 +16.51,76.2,-2.6428571428571437,0.43542857142857144,0.21666666666666667 +17.78,96.52,-3.800000000000001,0.5805714285714286,0.1842105263157895 +17.78,88.9,-5.9142857142857155,0.5805714285714286,0.2 +18.034,81.28,-6.057142857142858,0.5442857142857143,0.221875 +18.034,76.2,-5.42857142857143,0.6168571428571428,0.23666666666666664 +18.034,73.66,-4.657142857142858,0.6168571428571428,0.24482758620689654 +17.78,71.12,-4.9142857142857155,0.32657142857142857,0.25 +19.558,76.2,-4.242857142857144,0.5442857142857143,0.25666666666666665 +18.541999999999998,63.5,-2.1571428571428575,0.508,0.292 +18.288,63.5,0.8428571428571422,0.508,0.288 +18.034,63.5,2.428571428571428,0.47171428571428564,0.284 +17.78,63.5,2.7571428571428567,0.3991428571428571,0.28 +18.034,63.5,2.828571428571428,0.43542857142857144,0.284 +18.034,63.5,3.8285714285714283,0.43542857142857144,0.284 +18.034,63.5,3.771428571428571,0.18142857142857144,0.284 +18.034,58.42,2.9142857142857133,0.03628571428571429,0.30869565217391304 +18.034,60.96,1.6428571428571423,0.03628571428571429,0.29583333333333334 +18.034,60.96,0.6428571428571422,0.03628571428571429,0.29583333333333334 +19.304,66.04,0.3999999999999992,0.21771428571428572,0.29230769230769227 +19.304,73.66,-0.1285714285714294,0.18142857142857144,0.26206896551724135 +21.843999999999998,71.12,-0.37142857142857194,0.8345714285714286,0.3071428571428571 +21.843999999999998,78.74,-0.32857142857142907,1.016,0.27741935483870966 +21.843999999999998,81.28,-0.471428571428572,1.016,0.26875 +21.59,78.74,-1.0857142857142865,1.016,0.2741935483870968 +21.59,71.12,-1.2857142857142863,1.0885714285714285,0.30357142857142855 +21.843999999999998,73.66,-0.8714285714285724,0.9434285714285714,0.296551724137931 +21.843999999999998,66.04,0.08571428571428477,0.9434285714285713,0.3307692307692307 +20.32,58.42,0.8857142857142846,0.2902857142857143,0.34782608695652173 +19.812,58.42,2.3571428571428563,0.10885714285714286,0.3391304347826087 +19.558,58.42,3.985714285714285,0.10885714285714286,0.3347826086956522 +19.304,55.88,5.385714285714285,0.10885714285714286,0.3454545454545454 +18.541999999999998,58.42,5.657142857142857,0.03628571428571429,0.31739130434782603 +18.288,58.42,5.514285714285714,0.0,0.31304347826086953 +19.05,58.42,5.371428571428572,0.10885714285714286,0.32608695652173914 +19.304,58.42,4.642857142857143,0.14514285714285716,0.33043478260869563 +19.812,58.42,3.285714285714285,0.21771428571428572,0.3391304347826087 +20.066000000000003,60.96,2.085714285714285,0.2902857142857143,0.3291666666666667 +20.066000000000003,60.96,1.3714285714285706,0.32657142857142857,0.3291666666666667 +20.573999999999998,63.5,1.4285714285714275,0.43542857142857144,0.32399999999999995 +21.59,60.96,1.599999999999999,0.7982857142857143,0.3541666666666667 +21.59,58.42,1.3999999999999986,1.016,0.3695652173913043 +21.843999999999998,58.42,1.3714285714285699,1.1611428571428573,0.3739130434782608 +22.098,60.96,1.428571428571427,1.124857142857143,0.3625 +22.606,58.42,1.5999999999999985,1.124857142857143,0.3869565217391305 +22.098,63.5,1.9285714285714273,1.0885714285714287,0.348 +21.843999999999998,60.96,2.3714285714285706,0.9797142857142858,0.3583333333333333 +21.843999999999998,63.5,2.8857142857142852,0.6168571428571428,0.344 +21.843999999999998,60.96,3.399999999999999,0.2902857142857143,0.3583333333333333 +21.843999999999998,63.5,3.542857142857142,0.10885714285714286,0.344 +21.336000000000002,63.5,3.4142857142857137,0.07257142857142858,0.336 +21.336000000000002,60.96,2.885714285714285,0.0,0.35000000000000003 +21.336000000000002,60.96,2.542857142857142,0.0,0.35000000000000003 +21.336000000000002,63.5,2.5999999999999988,0.0,0.336 +21.336000000000002,63.5,1.714285714285713,0.0,0.336 +21.336000000000002,63.5,0.8142857142857132,0.0,0.336 +21.082,63.5,0.02857142857142752,0.0,0.332 +21.082,63.5,-0.6428571428571439,0.0,0.332 +20.573999999999998,63.5,-0.3285714285714296,0.0,0.32399999999999995 +20.32,63.5,0.3142857142857133,0.0,0.32 +20.32,63.5,-0.3428571428571439,0.0,0.32 +20.32,63.5,-0.38571428571428673,0.0,0.32 +21.082,83.82000000000001,-0.6571428571428584,0.25399999999999995,0.2515151515151515 +20.828,83.82000000000001,-0.842857142857144,0.25399999999999995,0.24848484848484845 +20.828,81.28,-0.5142857142857153,0.25399999999999995,0.25625 +20.066000000000003,78.74,-0.9714285714285723,0.25399999999999995,0.2548387096774194 +20.066000000000003,76.2,-2.0714285714285725,0.25399999999999995,0.26333333333333336 +19.812,76.2,-2.0000000000000013,0.25399999999999995,0.26 +19.812,73.66,-1.3142857142857152,0.25399999999999995,0.26896551724137935 +19.812,71.12,-0.21428571428571544,0.0,0.2785714285714286 +19.558,71.12,1.1857142857142844,0.0,0.27499999999999997 +19.558,71.12,2.3571428571428554,0.03628571428571429,0.27499999999999997 +19.558,68.58,3.8571428571428554,0.03628571428571429,0.2851851851851852 +20.066000000000003,66.04,5.5142857142857125,0.10885714285714286,0.3038461538461539 +20.573999999999998,66.04,5.942857142857141,0.18142857142857144,0.3115384615384615 +21.082,66.04,5.728571428571427,0.254,0.3192307692307692 +21.59,63.5,5.6999999999999975,0.32657142857142857,0.34 +21.082,60.96,5.414285714285713,0.43542857142857144,0.3458333333333333 +22.098,63.5,4.799999999999998,0.8345714285714286,0.348 +21.843999999999998,63.5,3.67142857142857,0.8345714285714286,0.344 +21.843999999999998,63.5,2.6857142857142846,0.7619999999999999,0.344 +21.843999999999998,60.96,2.528571428571428,0.6894285714285715,0.3583333333333333 +21.082,60.96,2.7428571428571416,0.6168571428571428,0.3458333333333333 +20.828,60.96,2.699999999999999,0.5805714285714286,0.3416666666666667 +21.59,60.96,2.2142857142857135,0.5805714285714286,0.3541666666666667 +20.828,60.96,1.9714285714285704,0.21771428571428572,0.3416666666666667 +21.336000000000002,71.12,1.87142857142857,0.32657142857142857,0.3 +21.843999999999998,73.66,1.4571428571428557,0.43542857142857144,0.296551724137931 +22.606,71.12,1.514285714285713,0.5442857142857143,0.31785714285714284 +22.098,66.04,1.8428571428571416,0.5442857142857143,0.3346153846153846 +21.59,63.5,2.142857142857142,0.508,0.34 +21.59,63.5,2.342857142857142,0.43542857142857144,0.34 +21.082,60.96,2.985714285714285,0.3628571428571429,0.3458333333333333 +20.32,58.42,3.999999999999999,0.254,0.34782608695652173 +20.066000000000003,60.96,4.099999999999999,0.14514285714285716,0.3291666666666667 +20.066000000000003,60.96,3.385714285714285,0.03628571428571429,0.3291666666666667 +19.304,60.96,2.0714285714285703,0.03628571428571429,0.31666666666666665 +18.796000000000003,60.96,0.8428571428571415,0.03628571428571429,0.3083333333333334 +18.034,60.96,0.19999999999999865,0.0,0.29583333333333334 +17.78,60.96,-0.7857142857142871,0.07257142857142858,0.2916666666666667 +17.272,58.42,-1.800000000000001,0.10885714285714286,0.29565217391304344 +17.78,60.96,-1.8285714285714296,0.21771428571428572,0.2916666666666667 +17.78,66.04,-1.4428571428571437,0.254,0.2692307692307692 +18.034,63.5,-1.0571428571428587,0.2902857142857143,0.284 +17.78,63.5,-0.6857142857142869,0.32657142857142857,0.28 +18.288,71.12,-0.7000000000000013,0.39914285714285713,0.2571428571428571 +18.541999999999998,68.58,-0.5142857142857157,0.3628571428571429,0.27037037037037037 +18.034,66.04,-0.3000000000000013,0.32657142857142857,0.27307692307692305 +18.034,63.5,-0.6285714285714299,0.21771428571428572,0.284 +18.288,63.5,-0.6714285714285727,0.21771428571428572,0.288 +18.034,60.96,-0.028571428571429865,0.18142857142857144,0.29583333333333334 +16.256,55.88,0.8571428571428557,0.14514285714285716,0.2909090909090909 +14.986,48.26,2.299999999999998,0.07257142857142858,0.3105263157894737 +13.97,40.64,3.514285714285713,0.03628571428571429,0.34375 +12.7,38.1,4.728571428571428,0.03628571428571429,0.3333333333333333 +11.176000000000002,30.48,6.099999999999999,0.03628571428571429,0.36666666666666675 +9.144,27.94,6.128571428571427,0.0,0.32727272727272727 +8.636,22.86,5.442857142857142,0.0,0.37777777777777777 +8.636,22.86,4.185714285714285,0.03628571428571429,0.37777777777777777 +8.128,25.4,2.9857142857142844,0.03628571428571429,0.32 +7.8740000000000006,20.32,2.37142857142857,0.07257142857142858,0.3875 +5.3340000000000005,12.7,2.2571428571428553,0.07257142857142858,0.42000000000000004 +4.064,10.16,2.3714285714285697,0.07257142857142858,0.4 +3.5559999999999996,15.24,-0.3285714285714298,0.8345714285714286,0.2333333333333333 +3.302,15.24,-1.8714285714285726,0.8345714285714286,0.21666666666666667 +3.302,12.7,-2.3428571428571443,0.9071428571428571,0.26 +3.5559999999999996,12.7,-1.62857142857143,0.9434285714285714,0.27999999999999997 +3.5559999999999996,12.7,-0.7714285714285728,0.7982857142857143,0.27999999999999997 +4.318,20.32,-1.4142857142857153,0.3628571428571429,0.21249999999999997 +4.318,20.32,-1.62857142857143,0.32657142857142857,0.21249999999999997 +4.064,20.32,-2.02857142857143,0.21771428571428572,0.2 +3.81,17.78,-1.7000000000000008,0.21771428571428572,0.21428571428571427 +3.81,17.78,-2.071428571428572,0.14514285714285716,0.21428571428571427 +3.81,17.78,-2.6000000000000005,0.10885714285714286,0.21428571428571427 +3.81,17.78,-3.0000000000000004,0.14514285714285716,0.21428571428571427 +4.572,25.4,-2.657142857142858,0.14514285714285716,0.18000000000000002 +5.588000000000001,25.4,-1.7000000000000004,0.2902857142857143,0.22000000000000006 +7.62,33.02,-0.8428571428571434,0.5805714285714286,0.23076923076923075 +7.62,33.02,-0.5000000000000007,0.5805714285714286,0.23076923076923075 +10.16,55.88,-0.5000000000000007,0.9434285714285714,0.18181818181818182 +11.938,60.96,-0.4428571428571436,1.1974285714285713,0.19583333333333333 +16.002,88.9,-0.2428571428571434,1.7417142857142858,0.17999999999999997 +16.002,53.34,0.5571428571428567,2.5037142857142856,0.29999999999999993 +16.256,53.34,0.25714285714285634,2.721428571428571,0.30476190476190473 +19.304,81.28,-0.15714285714285783,2.866571428571429,0.2375 +19.558,71.12,-0.35714285714285776,2.975428571428572,0.27499999999999997 +21.843999999999998,93.98,-0.42857142857142916,2.939142857142857,0.2324324324324324 +22.098,91.44,-0.9142857142857149,2.7214285714285715,0.24166666666666667 +21.843999999999998,88.9,-1.9285714285714293,2.140857142857143,0.24571428571428566 +22.098,86.36,-3.0857142857142863,1.3062857142857143,0.25588235294117645 +21.843999999999998,83.82000000000001,-3.7714285714285722,0.9434285714285714,0.26060606060606056 +25.654,111.76,-4.1571428571428575,1.0522857142857143,0.22954545454545452 +27.177999999999997,116.84,-4.057142857142858,1.1611428571428573,0.23260869565217387 +27.177999999999997,114.3,-4.271428571428572,0.9071428571428571,0.23777777777777775 +28.194,121.92,-4.314285714285715,1.016,0.23124999999999998 +30.988,147.32,-4.1000000000000005,1.4514285714285715,0.2103448275862069 +31.75,149.86,-4.42857142857143,1.5239999999999998,0.211864406779661 +34.29,165.1,-4.471428571428572,1.8868571428571426,0.2076923076923077 +34.036,154.94,-4.800000000000002,1.3425714285714285,0.219672131147541 +34.036,147.32,-5.600000000000001,1.1248571428571428,0.2310344827586207 +34.544,139.7,-6.200000000000001,1.1248571428571428,0.24727272727272728 +34.798,134.62,-6.32857142857143,1.016,0.25849056603773585 +34.798,132.08,-6.428571428571431,0.5805714285714286,0.26346153846153847 +34.798,129.54,-6.657142857142858,0.4717142857142857,0.2686274509803922 +34.544,127.0,-7.257142857142859,0.10885714285714286,0.27199999999999996 +34.544,127.0,-7.885714285714287,0.10885714285714286,0.27199999999999996 +34.544,124.46000000000001,-7.942857142857144,0.10885714285714286,0.2775510204081632 +34.544,121.92,-8.328571428571431,0.03628571428571429,0.2833333333333333 +35.56,132.08,-8.885714285714288,0.14514285714285716,0.2692307692307692 +35.814,129.54,-8.342857142857143,0.18142857142857144,0.27647058823529413 +36.322,129.54,-7.457142857142858,0.254,0.28039215686274516 +36.322,127.0,-6.200000000000001,0.254,0.28600000000000003 +36.322,124.46000000000001,-4.7857142857142865,0.254,0.29183673469387755 +36.068,124.46000000000001,-4.014285714285715,0.254,0.2897959183673469 +35.814,121.92,-2.942857142857144,0.254,0.29375 +35.814,121.92,-2.1857142857142864,0.10885714285714286,0.29375 +36.322,119.38,-2.3714285714285723,0.14514285714285716,0.3042553191489362 +39.37,144.78,-2.271428571428572,0.508,0.27192982456140347 +39.37,142.24,-2.214285714285715,0.508,0.27678571428571425 +39.624,139.7,-2.4857142857142867,0.5442857142857143,0.2836363636363637 +39.624,139.7,-2.357142857142858,0.5442857142857143,0.2836363636363637 +41.147999999999996,152.4,-2.0142857142857156,0.7619999999999999,0.26999999999999996 +42.164,154.94,-1.6714285714285726,0.9071428571428571,0.2721311475409836 +42.418,154.94,-1.5571428571428583,0.8708571428571429,0.27377049180327867 +43.942,162.56,-1.8714285714285726,0.6531428571428571,0.2703125 +44.958,170.18,-2.000000000000001,0.8345714285714286,0.26417910447761195 +46.99,167.64000000000001,-1.3428571428571439,1.0885714285714287,0.2803030303030303 +47.24400000000001,160.02,-0.9714285714285725,1.1611428571428573,0.29523809523809524 +48.26,170.18,-0.9428571428571441,1.0885714285714285,0.2835820895522388 +48.006,165.1,-1.3142857142857156,0.9434285714285713,0.2907692307692308 +47.752,162.56,-1.22857142857143,0.9071428571428571,0.29375 +48.006,154.94,-0.3000000000000012,0.7257142857142858,0.3098360655737705 +48.26,149.86,0.6142857142857131,0.5805714285714286,0.3220338983050847 +48.514,144.78,0.6571428571428565,0.43542857142857144,0.33508771929824566 +51.054,162.56,0.12857142857142786,0.7620000000000001,0.3140625 +51.308,162.56,-0.4428571428571435,0.6531428571428572,0.315625 +51.308,157.48,-0.7857142857142863,0.6531428571428572,0.3258064516129032 +51.562000000000005,154.94,-1.4000000000000004,0.6894285714285715,0.33278688524590166 +51.562000000000005,152.4,-2.714285714285715,0.6531428571428572,0.3383333333333334 +52.324000000000005,154.94,-3.885714285714286,0.7257142857142858,0.3377049180327869 +53.086,165.1,-4.242857142857144,0.7257142857142858,0.32153846153846155 +53.34,165.1,-3.8142857142857145,0.3628571428571429,0.3230769230769231 +53.086,162.56,-3.4285714285714297,0.32657142857142857,0.3265625 +53.086,160.02,-2.000000000000001,0.3628571428571429,0.33174603174603173 +53.594,157.48,-0.08571428571428667,0.39914285714285713,0.3403225806451613 +53.848,154.94,1.7999999999999987,0.43542857142857144,0.3475409836065574 +53.848,152.4,3.0428571428571414,0.32657142857142857,0.35333333333333333 +55.372,152.4,3.6571428571428557,0.39914285714285713,0.36333333333333334 +55.372,149.86,3.9999999999999987,0.3628571428571429,0.36949152542372876 +55.372,154.94,4.1428571428571415,0.508,0.35737704918032787 +55.88,149.86,3.942857142857141,0.5442857142857143,0.3728813559322034 +55.372,147.32,3.2285714285714273,0.508,0.37586206896551727 +55.372,147.32,2.457142857142856,0.4717142857142857,0.37586206896551727 +55.626,147.32,2.042857142857142,0.5805714285714286,0.3775862068965517 +55.88,154.94,1.357142857142856,0.39914285714285713,0.36065573770491804 +57.404,162.56,0.7571428571428561,0.6168571428571428,0.353125 +58.166,165.1,0.4428571428571417,0.5805714285714286,0.3523076923076923 +57.912000000000006,162.56,-0.385714285714287,0.5442857142857143,0.35625 +57.912000000000006,160.02,-1.3142857142857154,0.508,0.3619047619047619 +57.912000000000006,157.48,-2.042857142857144,0.508,0.367741935483871 +57.912000000000006,154.94,-2.157142857142858,0.39914285714285713,0.37377049180327876 +57.912000000000006,154.94,-1.6000000000000012,0.3628571428571429,0.37377049180327876 +57.658,152.4,-0.7428571428571435,0.14514285714285716,0.37833333333333335 +57.912000000000006,149.86,-0.014285714285714774,0.07257142857142858,0.3864406779661017 +58.928,154.94,0.31428571428571395,0.18142857142857144,0.380327868852459 +59.69,160.02,0.5571428571428569,0.2902857142857143,0.37301587301587297 +61.976,177.8,0.8428571428571424,0.6168571428571428,0.34857142857142853 +63.245999999999995,177.8,0.6142857142857138,0.7982857142857143,0.35571428571428565 +63.754000000000005,175.26,0.3285714285714279,0.8708571428571429,0.363768115942029 +64.008,172.72,-0.04285714285714356,0.9071428571428571,0.3705882352941176 +68.58,170.18,0.15714285714285614,1.5240000000000002,0.40298507462686567 +66.548,170.18,0.21428571428571347,1.487714285714286,0.39104477611940297 +66.548,175.26,0.099999999999999,1.4151428571428573,0.37971014492753624 +67.056,177.8,-0.2571428571428581,1.1611428571428573,0.3771428571428571 +70.358,200.66,-0.44285714285714384,1.4514285714285715,0.3506329113924051 +71.12,198.12,-0.6571428571428581,1.487714285714286,0.358974358974359 +72.136,200.66,-0.9714285714285728,1.5965714285714285,0.3594936708860759 +72.644,203.2,-1.7142857142857153,1.0160000000000002,0.35750000000000004 +75.69200000000001,226.06,-2.114285714285716,1.3425714285714287,0.3348314606741573 +77.216,236.22,-2.314285714285716,1.5965714285714288,0.3268817204301075 +77.724,228.6,-2.4000000000000017,1.5965714285714288,0.34 +77.724,223.52,-2.52857142857143,1.124857142857143,0.3477272727272727 +77.724,218.44,-2.971428571428573,1.0160000000000002,0.35581395348837214 +77.724,215.9,-3.314285714285716,0.870857142857143,0.36 +77.978,210.82,-2.9000000000000017,0.8345714285714286,0.36987951807228914 +78.232,205.74,-2.142857142857144,0.43542857142857155,0.38024691358024687 +77.724,203.2,-1.6000000000000014,0.14514285714285727,0.38250000000000006 +77.47,203.2,-1.185714285714287,0.10885714285714299,0.38125000000000003 +77.724,200.66,-0.8000000000000015,0.14514285714285727,0.38734177215189874 +77.978,200.66,-0.4857142857142872,0.18142857142857155,0.3886075949367088 +77.724,200.66,-0.2571428571428584,0.21771428571428583,0.38734177215189874 +78.232,198.12,-0.2714285714285727,0.2540000000000001,0.39487179487179486 +78.232,200.66,-0.8857142857142871,0.2540000000000001,0.389873417721519 +78.232,198.12,-1.085714285714287,0.2540000000000001,0.39487179487179486 +77.724,195.58,-0.6142857142857155,0.21771428571428583,0.3974025974025974 +78.232,193.04,0.028571428571427582,0.2540000000000001,0.4052631578947369 +78.994,190.5,1.3285714285714276,0.3265714285714287,0.4146666666666667 +78.232,185.42000000000002,2.6857142857142846,0.2902857142857144,0.42191780821917807 +77.216,180.34,3.6142857142857134,0.21771428571428583,0.428169014084507 +76.2,175.26,4.971428571428571,0.18142857142857155,0.4347826086956522 +75.69200000000001,180.34,5.042857142857143,0.2902857142857144,0.419718309859155 +75.438,175.26,4.985714285714286,0.2902857142857144,0.43043478260869567 +75.946,172.72,5.7,0.2902857142857144,0.43970588235294117 +74.93,167.64000000000001,6.057142857142857,0.18142857142857155,0.44696969696969696 +73.152,162.56,6.657142857142857,0.18142857142857155,0.45 +71.12,154.94,7.2142857142857135,0.18142857142857155,0.45901639344262296 +68.834,152.4,7.214285714285714,0.18142857142857155,0.45166666666666666 +67.056,149.86,8.542857142857143,0.0725714285714287,0.447457627118644 +65.786,147.32,8.571428571428571,0.0725714285714287,0.44655172413793104 +66.04,152.4,7.242857142857141,0.0725714285714287,0.43333333333333335 +66.29400000000001,157.48,5.799999999999999,0.18142857142857155,0.420967741935484 +66.29400000000001,149.86,4.299999999999999,0.18142857142857155,0.4423728813559322 +66.548,147.32,3.2714285714285696,0.21771428571428583,0.4517241379310345 +65.024,144.78,3.1285714285714263,0.21771428571428583,0.44912280701754387 +62.992000000000004,137.16,3.228571428571427,0.21771428571428583,0.4592592592592593 +60.705999999999996,132.08,4.47142857142857,0.21771428571428583,0.45961538461538454 +57.912000000000006,129.54,6.014285714285713,0.14514285714285727,0.44705882352941184 +55.626,124.46000000000001,7.385714285714285,0.036285714285714414,0.44693877551020406 +53.34,121.92,7.971428571428571,0.036285714285714414,0.4375 +51.308,116.84,7.885714285714284,0.0,0.43913043478260866 +50.038,114.3,7.0857142857142845,0.0,0.43777777777777777 +49.275999999999996,114.3,5.728571428571428,0.0,0.4311111111111111 +47.24400000000001,106.68,4.557142857142856,0.0,0.4428571428571429 +47.498,106.68,3.157142857142856,0.036285714285714414,0.4452380952380952 +45.72,104.14,2.3999999999999986,0.036285714285714414,0.43902439024390244 +44.958,104.14,1.8142857142857132,0.0725714285714287,0.4317073170731707 +43.942,99.06,2.057142857142856,0.0725714285714287,0.44358974358974357 +42.164,91.44,3.028571428571428,0.0725714285714287,0.46111111111111114 +39.37,86.36,4.471428571428571,0.0725714285714287,0.45588235294117646 +37.338,78.74,5.499999999999999,0.10885714285714299,0.4741935483870968 +35.306000000000004,73.66,6.442857142857142,0.0725714285714287,0.4793103448275863 +34.036,71.12,6.842857142857142,0.18142857142857155,0.47857142857142854 +30.48,60.96,8.071428571428571,0.14514285714285727,0.5 +25.907999999999998,53.34,9.228571428571428,0.14514285714285727,0.48571428571428565 +23.114,48.26,9.057142857142855,0.14514285714285727,0.4789473684210527 +21.082,43.18,8.057142857142855,0.14514285714285727,0.4882352941176471 +19.05,40.64,7.4571428571428555,0.10885714285714299,0.46875 +16.002,35.56,7.685714285714284,0.10885714285714299,0.44999999999999996 +12.7,27.94,8.299999999999999,0.0,0.4545454545454545 +8.636,22.86,8.157142857142855,0.0,0.37777777777777777 +6.8580000000000005,17.78,7.1999999999999975,0.3265714285714287,0.38571428571428573 +5.08,15.24,6.871428571428571,0.6894285714285715,0.3333333333333333 +4.572,27.94,-1.385714285714288,0.5805714285714287,0.16363636363636364 +5.3340000000000005,25.4,-0.9285714285714305,0.7257142857142859,0.21000000000000002 +5.08,25.4,-0.9714285714285735,0.6531428571428572,0.2 +6.096,38.1,-1.3714285714285737,0.7982857142857144,0.16 +6.35,35.56,-1.5714285714285734,0.870857142857143,0.17857142857142855 +6.35,33.02,-1.5857142857142883,0.7257142857142859,0.1923076923076923 +6.604,35.56,-1.6714285714285737,0.7620000000000002,0.1857142857142857 +6.8580000000000005,35.56,-1.9571428571428595,0.43542857142857155,0.19285714285714287 +6.8580000000000005,33.02,-1.985714285714288,0.362857142857143,0.20769230769230768 +7.111999999999999,33.02,-2.1571428571428592,0.3991428571428573,0.21538461538461534 +8.382,50.8,-2.6571428571428597,0.43542857142857155,0.165 +8.636,40.64,-3.4428571428571453,0.3991428571428573,0.21249999999999997 +8.636,38.1,-4.628571428571431,0.3991428571428573,0.22666666666666663 +8.636,35.56,-5.95714285714286,0.362857142857143,0.24285714285714283 +10.16,66.04,-7.500000000000002,0.5442857142857144,0.15384615384615383 +11.684,73.66,-8.057142857142859,0.7982857142857144,0.1586206896551724 +12.7,81.28,-8.385714285714288,0.9071428571428574,0.15625 +13.716000000000001,86.36,-8.242857142857144,0.9071428571428574,0.15882352941176472 +13.97,78.74,-7.885714285714288,0.9071428571428574,0.1774193548387097 +13.97,73.66,-7.585714285714287,0.9071428571428574,0.18965517241379312 +14.223999999999998,76.2,-7.671428571428573,0.9434285714285716,0.18666666666666665 +14.478000000000002,68.58,-7.014285714285717,0.7620000000000001,0.21111111111111114 +14.223999999999998,66.04,-8.042857142857146,0.43542857142857155,0.21538461538461534 +14.223999999999998,66.04,-8.92857142857143,0.2902857142857144,0.21538461538461534 +14.478000000000002,66.04,-8.828571428571431,0.21771428571428583,0.21923076923076923 +16.256,73.66,-8.285714285714288,0.43542857142857155,0.22068965517241382 +16.51,78.74,-7.514285714285717,0.5442857142857144,0.20967741935483875 +16.51,73.66,-6.1714285714285735,0.5080000000000001,0.2241379310344828 +16.764,73.66,-4.885714285714288,0.5080000000000001,0.22758620689655173 +17.018,76.2,-3.814285714285716,0.5442857142857144,0.22333333333333333 +17.018,73.66,-3.4000000000000017,0.5442857142857144,0.2310344827586207 +17.018,71.12,-4.014285714285716,0.43542857142857155,0.23928571428571427 +17.78,73.66,-4.52857142857143,0.2902857142857144,0.24137931034482762 +19.558,96.52,-4.82857142857143,0.43542857142857155,0.20263157894736844 +19.812,93.98,-5.200000000000002,0.4717142857142858,0.21081081081081082 +20.066000000000003,88.9,-5.271428571428573,0.4717142857142858,0.22571428571428573 +19.812,86.36,-5.500000000000002,0.43542857142857155,0.22941176470588237 +20.32,88.9,-4.771428571428574,0.5080000000000001,0.22857142857142856 +22.098,116.84,-4.900000000000003,0.7620000000000001,0.1891304347826087 +22.86,114.3,-6.285714285714287,0.7620000000000002,0.2 +22.86,106.68,-8.000000000000002,0.5080000000000001,0.21428571428571427 +23.622000000000003,106.68,-9.285714285714288,0.5805714285714286,0.22142857142857145 +23.876,101.6,-10.385714285714286,0.5805714285714287,0.23500000000000001 +23.876,99.06,-10.514285714285716,0.5805714285714287,0.24102564102564103 +24.384,99.06,-11.72857142857143,0.6531428571428572,0.24615384615384614 +26.67,114.3,-11.057142857142859,0.7620000000000002,0.23333333333333336 +27.177999999999997,114.3,-9.700000000000001,0.7257142857142858,0.23777777777777775 +28.194,127.0,-8.457142857142859,0.8708571428571429,0.222 +28.447999999999997,132.08,-8.171428571428573,0.7982857142857144,0.21538461538461534 +28.447999999999997,124.46000000000001,-8.242857142857144,0.7620000000000002,0.22857142857142854 +28.702,119.38,-7.9857142857142875,0.8708571428571431,0.24042553191489363 +28.702,116.84,-7.028571428571431,0.725714285714286,0.24565217391304348 +28.702,114.3,-6.428571428571431,0.3991428571428573,0.2511111111111111 +28.956000000000003,111.76,-5.2428571428571455,0.5080000000000001,0.2590909090909091 +29.21,106.68,-3.585714285714288,0.6168571428571429,0.2738095238095238 +30.988,114.3,-1.7000000000000026,0.8345714285714286,0.27111111111111114 +31.242,114.3,-0.685714285714288,0.8708571428571429,0.2733333333333334 +32.004,116.84,-0.5571428571428595,0.8708571428571429,0.27391304347826084 +32.512,124.46000000000001,-0.41428571428571687,0.9797142857142858,0.26122448979591834 +33.274,129.54,-1.071428571428574,1.0522857142857145,0.25686274509803925 +33.782000000000004,119.38,-2.171428571428574,0.9434285714285716,0.28297872340425534 +34.036,124.46000000000001,-3.3285714285714314,0.7257142857142859,0.27346938775510204 +34.036,119.38,-3.9714285714285738,0.47171428571428586,0.2851063829787234 +34.036,119.38,-4.071428571428574,0.43542857142857155,0.2851063829787234 +34.29,116.84,-3.642857142857145,0.362857142857143,0.2934782608695652 +34.29,116.84,-2.7428571428571447,0.2902857142857144,0.2934782608695652 +34.544,116.84,-1.5285714285714307,0.21771428571428583,0.29565217391304344 +34.544,116.84,-0.6571428571428591,0.14514285714285727,0.29565217391304344 +34.798,119.38,-1.1285714285714303,0.14514285714285727,0.2914893617021277 +34.798,119.38,-2.371428571428573,0.14514285714285727,0.2914893617021277 +35.306000000000004,121.92,-3.7571428571428593,0.21771428571428583,0.28958333333333336 +36.83,132.08,-4.128571428571431,0.47171428571428586,0.2788461538461538 +38.1,139.7,-4.642857142857145,0.6168571428571431,0.27272727272727276 +42.164,167.64000000000001,-5.471428571428573,1.1611428571428575,0.2515151515151515 +43.687999999999995,175.26,-6.571428571428574,1.378857142857143,0.24927536231884057 +43.687999999999995,172.72,-6.52857142857143,1.3425714285714285,0.2529411764705882 +47.24400000000001,175.26,-4.885714285714288,1.8505714285714288,0.2695652173913044 +46.228,165.1,-2.8285714285714305,2.3222857142857145,0.28 +46.99,167.64000000000001,-2.8000000000000016,2.140857142857143,0.2803030303030303 +47.24400000000001,162.56,-3.471428571428573,1.995714285714286,0.290625 +47.498,160.02,-3.1857142857142873,1.4514285714285717,0.29682539682539677 +47.498,157.48,-2.071428571428573,1.2337142857142862,0.3016129032258065 +47.498,154.94,-0.42857142857142977,1.3062857142857145,0.3065573770491803 +50.8,147.32,0.2428571428571414,1.4151428571428573,0.3448275862068966 +50.292,144.78,0.08571428571428395,0.9071428571428574,0.3473684210526316 +50.546,142.24,0.29999999999999816,0.8345714285714286,0.3553571428571428 +51.054,144.78,0.7714285714285694,0.870857142857143,0.3526315789473684 +51.308,149.86,0.44285714285714073,0.9071428571428573,0.3423728813559322 +53.34,170.18,-0.10000000000000243,1.1974285714285717,0.31343283582089554 +53.594,172.72,-1.0285714285714314,1.1611428571428573,0.31029411764705883 +53.34,167.64000000000001,-2.4000000000000026,0.5442857142857144,0.3181818181818182 +53.34,165.1,-3.600000000000002,0.5080000000000001,0.3230769230769231 +53.34,165.1,-4.55714285714286,0.47171428571428586,0.3230769230769231 +53.594,162.56,-5.285714285714287,0.43542857142857155,0.3296875 +54.102000000000004,165.1,-5.842857142857144,0.47171428571428586,0.3276923076923077 +54.864000000000004,175.26,-6.4857142857142875,0.2902857142857144,0.3130434782608696 +54.864000000000004,170.18,-7.014285714285715,0.3265714285714287,0.32238805970149254 +54.864000000000004,162.56,-6.428571428571431,0.362857142857143,0.3375 +55.372,160.02,-5.45714285714286,0.43542857142857155,0.346031746031746 +55.88,162.56,-4.342857142857145,0.5080000000000001,0.34375 +56.642,167.64000000000001,-4.05714285714286,0.5805714285714287,0.3378787878787879 +56.642,172.72,-4.071428571428574,0.47171428571428586,0.32794117647058824 +56.895999999999994,175.26,-4.157142857142859,0.3991428571428573,0.32463768115942027 +58.928,185.42000000000002,-3.7571428571428593,0.6531428571428572,0.31780821917808216 +59.944,193.04,-3.871428571428573,0.8345714285714287,0.3105263157894737 +64.008,187.96,-3.600000000000002,1.3425714285714287,0.3405405405405405 +61.467999999999996,180.34,-3.3142857142857167,1.3062857142857143,0.3408450704225352 +61.722,180.34,-2.471428571428574,1.2700000000000002,0.34225352112676055 +61.467999999999996,177.8,-1.2428571428571453,1.27,0.3457142857142857 +62.738,170.18,0.4428571428571405,1.4151428571428573,0.3686567164179104 +60.96,160.02,1.499999999999998,1.3062857142857145,0.38095238095238093 +58.928,154.94,2.2571428571428553,1.124857142857143,0.380327868852459 +58.166,152.4,1.6714285714285697,0.5442857142857144,0.38166666666666665 +59.69,154.94,1.5142857142857127,0.7257142857142859,0.38524590163934425 +57.404,152.4,1.37142857142857,0.7257142857142859,0.37666666666666665 +57.15,152.4,0.6857142857142845,0.7620000000000002,0.375 +57.404,152.4,-0.4142857142857159,0.6168571428571431,0.37666666666666665 +58.166,152.4,-0.8857142857142878,0.5080000000000001,0.38166666666666665 +58.67400000000001,157.48,-1.2857142857142878,0.5442857142857144,0.3725806451612904 +59.69,167.64000000000001,-0.9857142857142879,0.7257142857142859,0.356060606060606 +60.96,172.72,-1.0571428571428592,0.6894285714285715,0.35294117647058826 +61.214000000000006,170.18,-1.2857142857142878,0.6531428571428572,0.3597014925373134 +62.230000000000004,180.34,-1.042857142857145,0.7620000000000002,0.3450704225352113 +62.230000000000004,175.26,-0.7285714285714305,0.7620000000000002,0.35507246376811596 +62.738,175.26,-0.8571428571428589,0.7257142857142858,0.35797101449275365 +64.008,172.72,-0.6285714285714308,0.8345714285714287,0.3705882352941176 +62.738,170.18,-0.757142857142859,0.6531428571428572,0.3686567164179104 +62.738,167.64000000000001,-0.3571428571428591,0.47171428571428586,0.3742424242424242 +62.484,162.56,0.38571428571428334,0.43542857142857155,0.384375 +61.467999999999996,162.56,0.18571428571428342,0.2902857142857144,0.378125 +61.467999999999996,162.56,0.15714285714285495,0.2540000000000001,0.378125 +61.722,162.56,0.2571428571428548,0.2540000000000001,0.3796875 +62.230000000000004,160.02,0.5714285714285692,0.14514285714285727,0.3888888888888889 +65.024,160.02,1.1999999999999975,0.5442857142857145,0.40634920634920635 +62.738,162.56,0.8428571428571404,0.6531428571428572,0.3859375 +61.976,162.56,-0.11428571428571667,0.6531428571428572,0.38125 +62.230000000000004,160.02,-0.014285714285716868,0.6894285714285716,0.3888888888888889 +62.738,162.56,-0.1714285714285741,0.7620000000000002,0.3859375 +64.51599999999999,172.72,-0.5571428571428597,0.9797142857142859,0.37352941176470583 +67.31,182.88,-0.9285714285714312,1.3062857142857145,0.3680555555555556 +67.056,177.8,-1.5000000000000024,0.9071428571428574,0.3771428571428571 +67.31,177.8,-1.8714285714285739,0.8345714285714286,0.37857142857142856 +67.56400000000001,175.26,-1.6571428571428595,0.870857142857143,0.38550724637681166 +68.834,177.8,-1.3714285714285737,1.0160000000000002,0.3871428571428571 +68.58,175.26,-0.8000000000000018,0.9797142857142859,0.391304347826087 +67.818,172.72,-0.28571428571428725,0.6894285714285716,0.3926470588235294 +68.072,175.26,-0.24285714285714446,0.3991428571428573,0.3884057971014493 +68.072,170.18,-1.6891250303225595e-15,0.3991428571428573,0.4 +68.326,167.64000000000001,0.6428571428571414,0.3991428571428573,0.4075757575757575 +67.818,167.64000000000001,1.2142857142857129,0.362857142857143,0.4045454545454545 +67.56400000000001,165.1,1.285714285714284,0.18142857142857155,0.4092307692307693 +68.072,170.18,1.0714285714285696,0.2540000000000001,0.4 +68.834,170.18,1.0571428571428547,0.362857142857143,0.4044776119402985 +69.342,170.18,0.8428571428571406,0.3265714285714287,0.40746268656716417 +68.834,167.64000000000001,0.5428571428571408,0.3265714285714287,0.4106060606060606 +68.834,167.64000000000001,0.32857142857142635,0.2902857142857144,0.4106060606060606 +69.088,165.1,0.34285714285714064,0.362857142857143,0.41846153846153844 +69.596,162.56,0.34285714285714064,0.43542857142857155,0.42812500000000003 +68.834,162.56,0.471428571428569,0.362857142857143,0.4234375 +69.596,157.48,1.0714285714285692,0.362857142857143,0.4419354838709678 +66.04,149.86,2.5571428571428547,0.2902857142857144,0.4406779661016949 +62.992000000000004,139.7,4.314285714285712,0.362857142857143,0.450909090909091 +57.912000000000006,134.62,4.885714285714284,0.362857142857143,0.43018867924528303 +55.88,132.08,4.414285714285712,0.2902857142857144,0.4230769230769231 +54.864000000000004,129.54,4.67142857142857,0.21771428571428583,0.42352941176470593 +53.594,121.92,5.371428571428569,0.18142857142857155,0.4395833333333333 +51.815999999999995,116.84,5.628571428571427,0.0725714285714287,0.44347826086956516 +49.53,111.76,5.428571428571426,0.0725714285714287,0.4431818181818182 +47.752,109.22,4.44285714285714,0.0,0.4372093023255814 +46.482,106.68,3.828571428571426,0.0,0.43571428571428567 +45.465999999999994,101.6,3.9428571428571404,0.0,0.44749999999999995 +44.45,101.6,3.699999999999997,0.0,0.43750000000000006 +43.687999999999995,99.06,3.0571428571428547,0.0,0.44102564102564096 +43.434000000000005,101.6,1.8999999999999975,0.0725714285714287,0.42750000000000005 +42.672000000000004,93.98,0.9142857142857121,0.0725714285714287,0.4540540540540541 +41.147999999999996,88.9,1.199999999999998,0.14514285714285727,0.4628571428571428 +39.116,83.82000000000001,2.271428571428569,0.18142857142857155,0.4666666666666666 +37.083999999999996,78.74,3.285714285714284,0.18142857142857155,0.47096774193548385 +33.782000000000004,71.12,4.628571428571427,0.18142857142857155,0.47500000000000003 +30.48,63.5,6.085714285714284,0.18142857142857155,0.48 +26.416,53.34,7.885714285714284,0.10885714285714299,0.4952380952380952 +23.622000000000003,48.26,7.985714285714285,0.10885714285714299,0.4894736842105264 +21.843999999999998,43.18,8.028571428571427,0.036285714285714414,0.5058823529411764 +19.05,40.64,8.242857142857142,0.036285714285714414,0.46875 +14.986,33.02,8.885714285714284,0.0725714285714287,0.45384615384615384 +10.921999999999999,25.4,9.27142857142857,0.0725714285714287,0.43 +6.096,15.24,9.714285714285712,0.0725714285714287,0.4 +3.5559999999999996,25.4,-3.914285714285716,0.5442857142857144,0.13999999999999999 +4.572,30.48,-3.871428571428573,0.6168571428571431,0.15 +5.08,30.48,-3.371428571428573,0.6894285714285715,0.16666666666666666 +5.3340000000000005,30.48,-2.771428571428573,0.6168571428571431,0.17500000000000002 +5.842,25.4,-2.1000000000000023,0.5442857142857144,0.23 +7.111999999999999,35.56,-1.485714285714288,0.7257142857142859,0.19999999999999996 +7.111999999999999,33.02,-1.0000000000000022,0.6894285714285715,0.21538461538461534 +8.382,43.18,-0.7285714285714305,0.7257142857142859,0.19411764705882353 +8.636,43.18,-0.9571428571428591,0.6168571428571431,0.19999999999999998 +8.89,43.18,-1.400000000000002,0.5805714285714287,0.2058823529411765 +8.89,40.64,-1.6714285714285737,0.5442857142857144,0.21875 +10.16,45.72,-1.9285714285714302,0.6531428571428572,0.22222222222222224 +11.176000000000002,48.26,-1.8000000000000018,0.6531428571428572,0.2315789473684211 +10.921999999999999,35.56,-1.0142857142857156,1.0160000000000002,0.3071428571428571 +9.144,27.94,0.21428571428571289,0.9071428571428573,0.32727272727272727 +8.382,20.32,1.0999999999999983,1.0885714285714287,0.4125 +8.128,25.4,1.4142857142857126,1.0522857142857145,0.32 +8.382,25.4,1.6428571428571417,1.1974285714285717,0.33 +8.89,20.32,1.9428571428571415,1.0885714285714287,0.4375 +8.636,25.4,1.57142857142857,0.9071428571428574,0.33999999999999997 +8.89,30.48,0.8285714285714268,0.6168571428571431,0.2916666666666667 +8.89,30.48,-0.47142857142857325,0.5442857142857144,0.2916666666666667 +9.398000000000001,30.48,-0.9571428571428587,0.3991428571428573,0.3083333333333334 +9.144,30.48,-1.0142857142857162,0.43542857142857155,0.3 +9.652,35.56,-1.300000000000002,0.3265714285714287,0.2714285714285714 +9.652,33.02,-2.1142857142857165,0.2540000000000001,0.29230769230769227 +9.652,35.56,-2.0285714285714307,0.2540000000000001,0.2714285714285714 +9.652,33.02,-2.085714285714288,0.18142857142857155,0.29230769230769227 +10.16,33.02,-2.0714285714285734,0.2540000000000001,0.30769230769230765 +10.414,25.4,-1.628571428571431,0.21771428571428583,0.41000000000000003 +10.921999999999999,30.48,-0.4714285714285738,0.2540000000000001,0.3583333333333333 +11.176000000000002,30.48,0.6285714285714262,0.21771428571428583,0.36666666666666675 +11.176000000000002,30.48,2.028571428571426,0.2540000000000001,0.36666666666666675 +11.176000000000002,33.02,3.257142857142855,0.2540000000000001,0.3384615384615385 +10.921999999999999,30.48,4.214285714285713,0.2902857142857144,0.3583333333333333 +10.921999999999999,33.02,4.54285714285714,0.21771428571428583,0.3307692307692307 +10.668000000000001,33.02,4.528571428571427,0.18142857142857155,0.3230769230769231 +10.921999999999999,33.02,3.857142857142855,0.14514285714285727,0.3307692307692307 +10.921999999999999,33.02,2.6285714285714263,0.10885714285714299,0.3307692307692307 +10.921999999999999,33.02,1.999999999999998,0.10885714285714299,0.3307692307692307 +11.684,30.48,1.2714285714285691,0.21771428571428583,0.3833333333333333 +13.208,55.88,0.3571428571428551,0.3991428571428573,0.23636363636363636 +13.462,48.26,-0.6142857142857162,0.43542857142857155,0.2789473684210526 +13.716000000000001,53.34,-1.414285714285716,0.47171428571428586,0.2571428571428572 +14.478000000000002,63.5,-2.32857142857143,0.5442857142857144,0.22800000000000004 +14.478000000000002,63.5,-3.4428571428571453,0.5442857142857144,0.22800000000000004 +14.986,60.96,-4.614285714285716,0.6168571428571431,0.24583333333333335 +15.24,63.5,-5.342857142857144,0.5442857142857144,0.24 +15.24,60.96,-5.9857142857142875,0.362857142857143,0.25 +15.24,60.96,-5.214285714285716,0.3991428571428573,0.25 +16.764,68.58,-4.828571428571431,0.5805714285714287,0.24444444444444444 +19.304,68.58,-3.914285714285716,0.8708571428571431,0.28148148148148144 +20.32,78.74,-2.971428571428573,1.0160000000000002,0.25806451612903225 +20.573999999999998,76.2,-2.6142857142857165,0.9797142857142858,0.26999999999999996 +20.573999999999998,73.66,-1.7142857142857164,0.9797142857142859,0.2793103448275862 +20.573999999999998,71.12,-0.5428571428571446,0.9797142857142858,0.28928571428571426 +20.32,71.12,-0.05714285714285878,0.9071428571428574,0.2857142857142857 +20.32,68.58,0.2999999999999984,0.6894285714285715,0.29629629629629634 +20.573999999999998,66.04,0.3714285714285697,0.3265714285714287,0.3115384615384615 +20.828,68.58,0.8571428571428555,0.21771428571428583,0.3037037037037037 +20.573999999999998,68.58,1.642857142857141,0.14514285714285727,0.3 +20.573999999999998,68.58,1.4999999999999984,0.14514285714285727,0.3 +21.082,68.58,1.0571428571428554,0.18142857142857155,0.3074074074074074 +20.828,66.04,0.34285714285714114,0.21771428571428583,0.3153846153846153 +24.13,96.52,-0.0428571428571445,0.6894285714285715,0.25 +24.13,96.52,-0.257142857142859,0.725714285714286,0.25 +24.13,91.44,0.5142857142857126,0.6894285714285715,0.2638888888888889 +24.384,88.9,0.914285714285713,0.7257142857142859,0.2742857142857143 +24.384,88.9,0.6571428571428558,0.7257142857142858,0.2742857142857143 +24.637999999999998,88.9,0.699999999999999,0.6894285714285716,0.2771428571428571 +25.146,88.9,1.2142857142857129,0.8345714285714286,0.28285714285714286 +25.654,88.9,0.928571428571427,0.43542857142857155,0.28857142857142853 +25.907999999999998,93.98,0.3285714285714273,0.43542857142857155,0.27567567567567564 +26.162000000000003,93.98,-0.7571428571428587,0.47171428571428586,0.2783783783783784 +26.67,99.06,-1.7142857142857157,0.5080000000000001,0.2692307692307692 +27.432000000000002,106.68,-2.2857142857142874,0.5805714285714287,0.2571428571428572 +29.464,119.38,-2.52857142857143,0.8345714285714286,0.24680851063829787 +30.226000000000003,124.46000000000001,-2.82857142857143,0.7620000000000002,0.24285714285714285 +30.988,129.54,-3.314285714285716,0.7982857142857144,0.23921568627450981 +31.75,132.08,-3.4428571428571444,0.8345714285714287,0.24038461538461536 +33.274,137.16,-3.3000000000000016,1.0522857142857143,0.2425925925925926 +33.528,129.54,-2.5285714285714307,1.0160000000000002,0.25882352941176473 +34.544,132.08,-1.5571428571428592,1.0522857142857145,0.2615384615384615 +35.052,137.16,-1.9000000000000021,0.8345714285714287,0.25555555555555554 +35.052,134.62,-2.400000000000002,0.7620000000000001,0.26037735849056604 +36.068,134.62,-1.5857142857142874,0.7982857142857144,0.2679245283018868 +36.576,127.0,-0.4285714285714306,0.7982857142857144,0.288 +36.068,119.38,0.5571428571428553,0.5805714285714287,0.3021276595744681 +34.29,109.22,0.657142857142855,0.5442857142857144,0.313953488372093 +34.036,121.92,0.29999999999999793,0.3991428571428572,0.2791666666666667 +34.036,106.68,1.1285714285714268,0.3265714285714286,0.319047619047619 +34.29,106.68,2.528571428571427,0.3265714285714288,0.3214285714285714 +34.29,104.14,2.9714285714285693,0.18142857142857155,0.32926829268292684 +33.782000000000004,104.14,2.014285714285713,0.0725714285714287,0.32439024390243903 +34.036,101.6,1.1142857142857125,0.0725714285714287,0.335 +33.782000000000004,101.6,0.34285714285714114,0.0725714285714287,0.3325000000000001 +34.544,101.6,-0.6142857142857159,0.18142857142857155,0.33999999999999997 +34.798,101.6,-0.5571428571428588,0.21771428571428583,0.3425 +35.052,104.14,-1.842857142857144,0.21771428571428583,0.33658536585365856 +35.052,104.14,-2.9571428571428586,0.21771428571428583,0.33658536585365856 +35.052,104.14,-2.800000000000001,0.3265714285714287,0.33658536585365856 +37.338,129.54,-2.9142857142857155,0.6168571428571431,0.2882352941176471 +37.846000000000004,142.24,-3.8714285714285728,0.6894285714285715,0.26607142857142857 +37.846000000000004,137.16,-4.685714285714288,0.5805714285714286,0.27592592592592596 +38.354,137.16,-6.685714285714288,0.6168571428571431,0.2796296296296296 +38.608,134.62,-7.757142857142858,0.6168571428571431,0.28679245283018867 +38.354,134.62,-8.900000000000002,0.6168571428571431,0.2849056603773585 +39.37,134.62,-9.871428571428572,0.6531428571428572,0.29245283018867924 +39.37,139.7,-10.385714285714286,0.3991428571428573,0.2818181818181818 +42.164,167.64000000000001,-9.971428571428573,0.725714285714286,0.2515151515151515 +42.164,160.02,-9.328571428571431,0.725714285714286,0.2634920634920635 +42.418,154.94,-8.3,0.6894285714285716,0.27377049180327867 +44.45,175.26,-7.271428571428572,0.9434285714285716,0.2536231884057971 +44.958,172.72,-5.9142857142857155,1.0160000000000002,0.26029411764705884 +45.465999999999994,170.18,-5.385714285714287,0.9434285714285717,0.26716417910447754 +45.465999999999994,170.18,-5.200000000000001,0.8708571428571431,0.26716417910447754 +46.228,172.72,-5.014285714285715,0.5805714285714287,0.2676470588235294 +46.482,172.72,-4.685714285714288,0.6168571428571431,0.2691176470588235 +46.482,167.64000000000001,-4.685714285714288,0.5805714285714288,0.2772727272727272 +47.24400000000001,162.56,-3.9000000000000017,0.3991428571428573,0.290625 +48.26,170.18,-3.500000000000001,0.47171428571428586,0.2835820895522388 +48.26,170.18,-3.2714285714285727,0.43542857142857155,0.2835820895522388 +48.26,165.1,-3.0714285714285725,0.47171428571428586,0.2923076923076923 +48.26,165.1,-2.357142857142858,0.362857142857143,0.2923076923076923 +48.768,162.56,-1.3142857142857154,0.3991428571428573,0.3 +49.784000000000006,165.1,-0.41428571428571576,0.5442857142857144,0.3015384615384616 +49.784000000000006,162.56,-0.8571428571428586,0.43542857142857155,0.30625 +49.53,162.56,-1.3000000000000018,0.2902857142857144,0.3046875 +49.53,162.56,-1.1857142857142873,0.2540000000000001,0.3046875 +49.53,160.02,-1.014285714285716,0.21771428571428583,0.30952380952380953 +49.275999999999996,160.02,-1.414285714285716,0.21771428571428583,0.3079365079365079 +49.53,157.48,-1.8428571428571445,0.18142857142857155,0.3145161290322581 +49.784000000000006,157.48,-2.0142857142857156,0.0725714285714287,0.3161290322580646 +50.546,162.56,-1.814285714285716,0.21771428571428583,0.3109375 +50.8,165.1,-1.6142857142857157,0.2540000000000001,0.3076923076923077 +52.07,172.72,-1.9571428571428586,0.43542857142857155,0.3014705882352941 +52.07,172.72,-2.314285714285716,0.47171428571428586,0.3014705882352941 +52.07,170.18,-2.6000000000000014,0.47171428571428586,0.30597014925373134 +52.324000000000005,167.64000000000001,-2.7714285714285727,0.5080000000000001,0.31212121212121213 +53.086,160.02,-2.614285714285716,0.5805714285714287,0.33174603174603173 +52.577999999999996,157.48,-2.614285714285716,0.43542857142857155,0.3338709677419355 +52.832,154.94,-1.9285714285714302,0.43542857142857155,0.3409836065573771 +53.086,152.4,-0.9857142857142873,0.2902857142857144,0.34833333333333333 +53.086,149.86,-0.2000000000000018,0.2540000000000001,0.3542372881355932 +53.086,157.48,0.05714285714285548,0.2902857142857144,0.3370967741935484 +53.34,157.48,-0.34285714285714447,0.2540000000000001,0.33870967741935487 +53.086,154.94,-0.685714285714287,0.18142857142857155,0.34262295081967215 +53.34,152.4,-0.40000000000000124,0.2902857142857144,0.35000000000000003 +54.102000000000004,149.86,-0.38571428571428706,0.362857142857143,0.36101694915254234 +54.355999999999995,144.78,0.0285714285714272,0.362857142857143,0.375438596491228 +54.102000000000004,147.32,0.028571428571427138,0.6168571428571429,0.3672413793103449 +54.61,147.32,0.34285714285714153,0.6531428571428571,0.3706896551724138 +54.61,144.78,1.5428571428571414,0.6531428571428572,0.37719298245614036 +54.61,144.78,1.9714285714285702,0.6894285714285716,0.37719298245614036 +55.372,149.86,1.6285714285714268,0.6894285714285715,0.36949152542372876 +55.372,149.86,0.8285714285714271,0.6531428571428571,0.36949152542372876 +55.626,144.78,0.2999999999999982,0.6531428571428572,0.38421052631578945 +55.118,142.24,0.4428571428571414,0.39914285714285735,0.3875 +55.372,147.32,0.5428571428571413,0.43542857142857155,0.37586206896551727 +55.626,147.32,-0.32857142857142996,0.43542857142857155,0.3775862068965517 +55.626,144.78,-1.0142857142857158,0.3991428571428572,0.38421052631578945 +55.88,142.24,-1.1142857142857154,0.3265714285714288,0.39285714285714285 +55.88,139.7,-0.44285714285714406,0.2540000000000001,0.4000000000000001 +55.118,137.16,0.12857142857142753,0.21771428571428583,0.4018518518518519 +54.864000000000004,137.16,-0.20000000000000107,0.21771428571428583,0.4 +54.102000000000004,137.16,-0.1571428571428583,0.10885714285714299,0.3944444444444445 +54.102000000000004,132.08,0.6571428571428558,0.0725714285714287,0.4096153846153846 +52.832,129.54,1.9571428571428555,0.036285714285714414,0.407843137254902 +51.308,124.46000000000001,3.3714285714285697,0.0,0.4122448979591836 +49.53,119.38,4.399999999999998,0.0,0.41489361702127664 +46.99,116.84,4.871428571428569,0.0,0.40217391304347827 +45.974000000000004,114.3,5.185714285714283,0.0,0.40222222222222226 +45.212,111.76,5.342857142857141,0.0,0.40454545454545454 +44.196,109.22,5.114285714285713,0.0,0.4046511627906977 +43.687999999999995,106.68,4.699999999999998,0.0,0.40952380952380946 +41.402,101.6,4.542857142857142,0.036285714285714414,0.40750000000000003 +39.37,96.52,4.7714285714285705,0.0725714285714287,0.40789473684210525 +37.338,91.44,5.04285714285714,0.0725714285714287,0.4083333333333334 +35.052,88.9,5.914285714285712,0.0725714285714287,0.39428571428571424 +33.02,81.28,6.8285714285714265,0.10885714285714299,0.40625000000000006 +29.718,71.12,8.028571428571427,0.10885714285714299,0.4178571428571428 +26.67,66.04,8.928571428571427,0.21771428571428583,0.40384615384615385 +23.368,58.42,8.614285714285712,0.18142857142857155,0.39999999999999997 +21.082,50.8,7.414285714285713,0.14514285714285727,0.41500000000000004 +18.288,43.18,6.742857142857141,0.14514285714285727,0.4235294117647059 +14.732,35.56,7.042857142857142,0.14514285714285727,0.41428571428571426 +10.668000000000001,27.94,7.685714285714284,0.14514285714285727,0.38181818181818183 +6.604,17.78,8.114285714285712,0.14514285714285727,0.3714285714285714 +3.048,7.62,-0.27142857142857363,0.6168571428571431,0.4 +3.048,10.16,-0.41428571428571664,0.5080000000000001,0.3 +3.302,10.16,-0.4714285714285737,0.3991428571428573,0.325 +3.5559999999999996,12.7,-0.6714285714285736,0.43542857142857155,0.27999999999999997 +3.5559999999999996,15.24,-1.100000000000002,0.3991428571428573,0.2333333333333333 +3.5559999999999996,17.78,-2.5285714285714307,0.2902857142857144,0.19999999999999996 +3.302,15.24,-3.8142857142857163,0.14514285714285727,0.21666666666666667 +3.5559999999999996,15.24,-5.185714285714288,0.10885714285714299,0.2333333333333333 +3.302,12.7,-6.528571428571431,0.10885714285714299,0.26 +3.5559999999999996,15.24,-7.2285714285714295,0.14514285714285727,0.2333333333333333 +3.5559999999999996,15.24,-6.714285714285716,0.10885714285714299,0.2333333333333333 +4.064,10.16,-6.314285714285716,0.18142857142857155,0.4 +4.064,15.24,-5.700000000000002,0.18142857142857155,0.26666666666666666 +6.096,38.1,-4.742857142857145,0.47171428571428586,0.16 +6.8580000000000005,38.1,-3.8142857142857163,0.5805714285714287,0.18000000000000002 +7.111999999999999,38.1,-2.214285714285716,0.6168571428571431,0.18666666666666665 +7.62,43.18,-1.1428571428571448,0.6168571428571431,0.17647058823529413 +8.382,40.64,-1.5857142857142879,0.7257142857142859,0.20625 +10.668000000000001,50.8,-1.3142857142857165,0.9797142857142858,0.21000000000000002 +11.938,60.96,-1.185714285714288,1.1611428571428573,0.19583333333333333 +15.748000000000001,93.98,-1.1428571428571452,1.4151428571428573,0.16756756756756758 +16.002,83.82000000000001,-0.8714285714285736,1.3062857142857145,0.1909090909090909 +17.018,86.36,-0.9142857142857163,1.4151428571428575,0.1970588235294118 +17.018,81.28,-1.8142857142857163,1.3425714285714285,0.209375 +17.78,86.36,-1.9285714285714308,1.3425714285714285,0.2058823529411765 +19.05,93.98,-2.2714285714285736,1.1974285714285717,0.20270270270270271 +18.796000000000003,88.9,-2.728571428571431,1.0160000000000002,0.21142857142857144 +18.796000000000003,83.82000000000001,-3.457142857142859,0.47171428571428586,0.22424242424242427 +19.558,88.9,-3.8142857142857163,0.5442857142857144,0.21999999999999997 +19.558,86.36,-4.400000000000003,0.3991428571428573,0.22647058823529412 +19.558,83.82000000000001,-3.7000000000000024,0.43542857142857155,0.2333333333333333 +20.828,88.9,-2.9428571428571444,0.5080000000000001,0.23428571428571426 +21.082,88.9,-3.3857142857142875,0.362857142857143,0.23714285714285713 +20.828,86.36,-3.9000000000000017,0.362857142857143,0.2411764705882353 +21.082,83.82000000000001,-3.2714285714285736,0.3991428571428573,0.2515151515151515 +21.336000000000002,83.82000000000001,-2.3714285714285737,0.3265714285714287,0.2545454545454546 +21.336000000000002,78.74,-1.457142857142859,0.362857142857143,0.2709677419354839 +21.843999999999998,83.82000000000001,-1.385714285714288,0.3991428571428573,0.26060606060606056 +22.352000000000004,91.44,-1.7000000000000017,0.3265714285714287,0.2444444444444445 +22.86,93.98,-1.6285714285714303,0.362857142857143,0.24324324324324323 +23.114,96.52,-1.4714285714285733,0.3991428571428573,0.23947368421052634 +24.892000000000003,101.6,-2.0714285714285734,0.6531428571428572,0.24500000000000005 +26.416,111.76,-2.371428571428573,0.8345714285714287,0.23636363636363636 +26.67,106.68,-2.600000000000002,0.8345714285714286,0.25 +26.416,104.14,-2.500000000000002,0.7620000000000002,0.25365853658536586 +26.416,101.6,-2.500000000000002,0.6531428571428572,0.26 +26.416,101.6,-2.0857142857142876,0.5805714285714288,0.26 +26.416,99.06,-1.3857142857142877,0.5442857142857144,0.26666666666666666 +26.67,96.52,-1.0571428571428592,0.2902857142857144,0.27631578947368424 +27.177999999999997,101.6,-1.5142857142857162,0.18142857142857155,0.2675 +28.194,106.68,-1.7285714285714302,0.2902857142857144,0.26428571428571423 +30.988,127.0,-2.000000000000002,0.6894285714285716,0.244 +31.496000000000002,121.92,-1.9285714285714308,0.7620000000000002,0.25833333333333336 +32.512,129.54,-2.2142857142857166,0.9071428571428574,0.25098039215686274 +32.257999999999996,124.46000000000001,-2.714285714285716,0.9071428571428574,0.2591836734693877 +33.528,134.62,-2.5142857142857165,1.0522857142857145,0.24905660377358488 +33.528,129.54,-2.0142857142857165,0.9797142857142859,0.25882352941176473 +33.528,124.46000000000001,-1.5857142857142879,0.8708571428571431,0.26938775510204077 +33.528,124.46000000000001,-0.657142857142859,0.47171428571428586,0.26938775510204077 +33.528,121.92,0.6285714285714266,0.3991428571428573,0.27499999999999997 +33.528,119.38,1.9714285714285695,0.2540000000000001,0.28085106382978725 +33.274,116.84,2.1571428571428553,0.2540000000000001,0.2847826086956522 +33.274,116.84,1.8428571428571412,0.0725714285714287,0.2847826086956522 +33.274,114.3,2.542857142857141,0.036285714285714414,0.29111111111111115 +33.528,111.76,3.0714285714285694,0.036285714285714414,0.3 +34.036,109.22,2.6857142857142833,0.10885714285714299,0.3116279069767442 +34.036,109.22,1.5999999999999976,0.10885714285714299,0.3116279069767442 +34.036,109.22,0.25714285714285495,0.10885714285714299,0.3116279069767442 +35.56,129.54,-0.21428571428571658,0.3265714285714287,0.27450980392156865 +35.56,129.54,-0.828571428571431,0.3265714285714287,0.27450980392156865 +35.56,124.46000000000001,-3.1285714285714303,0.3265714285714287,0.2857142857142857 +35.814,124.46000000000001,-4.9857142857142875,0.3265714285714287,0.28775510204081634 +36.322,127.0,-6.157142857142859,0.3265714285714287,0.28600000000000003 +38.1,149.86,-8.171428571428574,0.6168571428571431,0.2542372881355932 +39.624,165.1,-9.057142857142859,0.8345714285714286,0.24000000000000002 +42.164,182.88,-8.828571428571431,0.9797142857142858,0.23055555555555557 +44.958,185.42000000000002,-8.171428571428574,1.378857142857143,0.2424657534246575 +44.958,177.8,-7.271428571428574,1.378857142857143,0.25285714285714284 +46.482,185.42000000000002,-7.1142857142857165,1.5602857142857147,0.2506849315068493 +46.736,177.8,-6.82857142857143,1.5240000000000002,0.26285714285714284 +47.24400000000001,180.34,-5.600000000000002,1.3062857142857145,0.26197183098591553 +47.24400000000001,175.26,-5.014285714285717,1.0885714285714287,0.2695652173913044 +47.24400000000001,172.72,-5.214285714285716,0.725714285714286,0.2735294117647059 +48.006,172.72,-5.485714285714288,0.43542857142857155,0.27794117647058825 +48.006,175.26,-5.72857142857143,0.43542857142857155,0.2739130434782609 +48.006,170.18,-6.028571428571431,0.21771428571428583,0.28208955223880594 +48.26,170.18,-6.271428571428574,0.2540000000000001,0.2835820895522388 +49.022000000000006,185.42000000000002,-6.414285714285717,0.2902857142857144,0.26438356164383564 +49.53,180.34,-6.757142857142859,0.362857142857143,0.2746478873239437 +50.292,182.88,-7.342857142857146,0.47171428571428586,0.275 +50.8,185.42000000000002,-8.500000000000002,0.43542857142857155,0.273972602739726 +51.308,185.42000000000002,-9.200000000000003,0.5080000000000001,0.27671232876712326 +51.308,180.34,-9.000000000000004,0.5080000000000001,0.28450704225352114 +51.562000000000005,175.26,-8.971428571428573,0.47171428571428586,0.2942028985507247 +51.562000000000005,182.88,-9.371428571428575,0.362857142857143,0.2819444444444445 +51.308,170.18,-10.242857142857146,0.2902857142857144,0.30149253731343284 +51.562000000000005,167.64000000000001,-10.585714285714289,0.21771428571428583,0.30757575757575756 +51.815999999999995,165.1,-9.942857142857147,0.18142857142857155,0.31384615384615383 +52.07,170.18,-9.142857142857144,0.21771428571428583,0.30597014925373134 +52.577999999999996,170.18,-9.114285714285717,0.2902857142857144,0.308955223880597 +52.832,170.18,-9.42857142857143,0.2902857142857144,0.31044776119402984 +52.577999999999996,167.64000000000001,-9.385714285714288,0.2902857142857144,0.3136363636363636 +52.832,167.64000000000001,-8.35714285714286,0.3265714285714287,0.3151515151515151 +53.594,165.1,-6.5428571428571445,0.3991428571428573,0.32461538461538464 +53.086,170.18,-5.814285714285718,0.43542857142857155,0.3119402985074627 +53.086,165.1,-5.671428571428575,0.3265714285714287,0.32153846153846155 +53.34,165.1,-4.942857142857145,0.2902857142857144,0.3230769230769231 +53.848,160.02,-3.528571428571431,0.3265714285714287,0.3365079365079365 +53.848,157.48,-1.814285714285717,0.3265714285714287,0.3419354838709678 +54.102000000000004,154.94,-0.3857142857142886,0.3265714285714287,0.3491803278688525 +54.355999999999995,152.4,0.09999999999999723,0.2540000000000001,0.35666666666666663 +54.61,152.4,1.0571428571428543,0.21771428571428583,0.35833333333333334 +54.61,147.32,2.14285714285714,0.21771428571428583,0.3706896551724138 +54.864000000000004,144.78,3.114285714285711,0.21771428571428583,0.37894736842105264 +54.61,144.78,3.385714285714283,0.14514285714285727,0.37719298245614036 +54.61,142.24,3.0428571428571405,0.14514285714285727,0.3839285714285714 +55.372,144.78,2.6142857142857117,0.21771428571428583,0.3824561403508772 +55.372,149.86,2.214285714285712,0.2540000000000001,0.36949152542372876 +56.388,144.78,1.7285714285714262,0.362857142857143,0.3894736842105263 +55.88,144.78,1.042857142857141,0.3991428571428573,0.3859649122807018 +56.388,147.32,0.25714285714285523,0.43542857142857155,0.38275862068965516 +57.15,152.4,-0.342857142857145,0.5805714285714287,0.375 +57.404,149.86,-0.342857142857145,0.6168571428571431,0.38305084745762713 +57.912000000000006,147.32,0.028571428571426378,0.5805714285714287,0.39310344827586213 +57.404,144.78,0.5571428571428547,0.5080000000000001,0.39649122807017545 +57.15,142.24,1.071428571428569,0.362857142857143,0.40178571428571425 +57.15,142.24,1.5999999999999974,0.3265714285714287,0.40178571428571425 +57.404,139.7,2.028571428571426,0.2902857142857144,0.41090909090909095 +57.912000000000006,144.78,2.1571428571428544,0.21771428571428583,0.4 +59.182,149.86,1.8571428571428545,0.362857142857143,0.3949152542372881 +60.705999999999996,152.4,1.6714285714285688,0.5080000000000001,0.3983333333333333 +61.467999999999996,152.4,1.5142857142857122,0.6168571428571431,0.4033333333333333 +60.96,149.86,0.9999999999999981,0.6168571428571431,0.4067796610169491 +61.214000000000006,149.86,0.5999999999999979,0.6531428571428572,0.40847457627118644 +61.214000000000006,147.32,0.31428571428571195,0.6531428571428572,0.4155172413793104 +61.467999999999996,144.78,0.4714285714285694,0.6168571428571429,0.4245614035087719 +61.214000000000006,147.32,0.6142857142857123,0.47171428571428586,0.4155172413793104 +61.467999999999996,147.32,0.04285714285714074,0.2902857142857144,0.41724137931034483 +61.214000000000006,147.32,-0.5000000000000021,0.2540000000000001,0.4155172413793104 +61.214000000000006,144.78,-0.2571428571428597,0.2540000000000001,0.4228070175438597 +60.96,142.24,0.4285714285714263,0.21771428571428583,0.42857142857142855 +59.436,134.62,1.6142857142857125,0.18142857142857155,0.4415094339622641 +57.15,132.08,2.2428571428571407,0.14514285714285727,0.43269230769230765 +55.372,124.46000000000001,2.757142857142855,0.10885714285714299,0.4448979591836734 +54.102000000000004,121.92,3.7999999999999976,0.0725714285714287,0.44375000000000003 +51.562000000000005,114.3,5.028571428571427,0.0,0.4511111111111112 +49.784000000000006,111.76,5.499999999999998,0.0,0.4454545454545455 +48.768,109.22,5.628571428571426,0.0,0.44651162790697674 +47.24400000000001,106.68,5.071428571428569,0.0,0.4428571428571429 +46.482,101.6,4.714285714285713,0.0,0.4575 +45.465999999999994,104.14,3.8428571428571408,0.0,0.4365853658536585 +45.465999999999994,101.6,3.085714285714283,0.036285714285714414,0.44749999999999995 +45.212,101.6,2.014285714285712,0.036285714285714414,0.44500000000000006 +45.212,99.06,1.5857142857142834,0.036285714285714414,0.45641025641025645 +44.958,99.06,1.214285714285712,0.036285714285714414,0.45384615384615384 +43.434000000000005,96.52,0.9285714285714263,0.036285714285714414,0.45000000000000007 +41.656,93.98,1.385714285714284,0.0725714285714287,0.4432432432432432 +39.37,88.9,2.971428571428569,0.0725714285714287,0.4428571428571428 +38.1,83.82000000000001,4.142857142857141,0.036285714285714414,0.45454545454545453 +35.306000000000004,78.74,5.528571428571427,0.036285714285714414,0.44838709677419364 +33.528,76.2,6.628571428571426,0.036285714285714414,0.43999999999999995 +32.004,71.12,7.557142857142855,0.036285714285714414,0.44999999999999996 +29.464,66.04,8.34285714285714,0.036285714285714414,0.44615384615384607 +26.924,60.96,8.828571428571427,0.0,0.44166666666666665 +24.384,53.34,9.385714285714284,0.036285714285714414,0.45714285714285713 +21.59,48.26,9.885714285714284,0.036285714285714414,0.4473684210526316 +19.05,43.18,9.985714285714282,0.036285714285714414,0.44117647058823534 +17.526,40.64,9.399999999999997,0.036285714285714414,0.43124999999999997 +17.018,35.56,8.571428571428568,0.14514285714285727,0.47857142857142854 +15.24,33.02,8.14285714285714,0.2902857142857144,0.4615384615384615 +12.192,25.4,7.14285714285714,0.2902857142857144,0.48000000000000004 +10.668000000000001,22.86,5.971428571428569,0.2902857142857144,0.46666666666666673 +9.398000000000001,20.32,4.94285714285714,0.5805714285714287,0.4625000000000001 +8.89,17.78,3.9428571428571404,0.8345714285714286,0.5 +10.921999999999999,27.94,3.6714285714285695,1.1974285714285717,0.3909090909090909 +9.652,22.86,4.128571428571426,1.0885714285714285,0.4222222222222222 +6.604,15.24,4.67142857142857,0.9797142857142858,0.43333333333333335 +3.048,20.32,2.085714285714283,0.7257142857142859,0.15 +3.302,25.4,-0.85714285714286,0.3265714285714287,0.13 +6.096,66.04,-2.0000000000000027,0.725714285714286,0.0923076923076923 +6.096,53.34,-3.4428571428571457,0.6531428571428572,0.11428571428571428 +6.096,43.18,-5.35714285714286,0.6168571428571431,0.1411764705882353 +6.096,35.56,-7.400000000000004,0.6531428571428572,0.17142857142857143 +7.111999999999999,33.02,-7.971428571428574,0.8345714285714287,0.21538461538461534 +7.111999999999999,25.4,-7.285714285714289,0.8345714285714287,0.27999999999999997 +7.366,27.94,-5.842857142857146,0.6894285714285715,0.2636363636363636 +7.366,22.86,-4.200000000000003,0.2902857142857144,0.3222222222222222 +7.111999999999999,22.86,-2.4428571428571457,0.2902857142857144,0.31111111111111106 +7.366,22.86,-0.7714285714285741,0.3265714285714287,0.3222222222222222 +7.62,17.78,0.8142857142857116,0.2902857142857144,0.42857142857142855 +7.62,17.78,1.4428571428571402,0.10885714285714299,0.42857142857142855 +7.62,25.4,1.1999999999999975,0.10885714285714299,0.30000000000000004 +7.8740000000000006,20.32,1.0285714285714265,0.14514285714285727,0.3875 +8.636,30.48,0.5857142857142836,0.2540000000000001,0.2833333333333333 +10.668000000000001,55.88,0.11428571428571217,0.5442857142857144,0.19090909090909092 +10.668000000000001,50.8,-0.6000000000000022,0.5080000000000001,0.21000000000000002 +10.668000000000001,43.18,-1.3428571428571447,0.47171428571428586,0.2470588235294118 +10.414,43.18,-2.1571428571428592,0.47171428571428586,0.2411764705882353 +10.668000000000001,38.1,-2.3857142857142875,0.5080000000000001,0.28 +10.921999999999999,40.64,-2.5714285714285734,0.47171428571428586,0.26875 +11.176000000000002,45.72,-2.800000000000003,0.3991428571428573,0.2444444444444445 +13.462,58.42,-2.6571428571428592,0.43542857142857155,0.23043478260869565 +14.732,53.34,-1.942857142857145,0.7257142857142859,0.27619047619047615 +14.732,48.26,-1.3428571428571452,0.7257142857142859,0.30526315789473685 +15.24,50.8,-0.7285714285714308,0.7982857142857144,0.30000000000000004 +14.986,53.34,-0.8571428571428594,0.7620000000000002,0.28095238095238095 +14.986,53.34,-1.8857142857142881,0.7257142857142859,0.28095238095238095 +14.986,50.8,-2.571428571428574,0.6894285714285715,0.29500000000000004 +14.986,45.72,-3.4857142857142884,0.362857142857143,0.3277777777777778 +15.24,53.34,-4.25714285714286,0.10885714285714299,0.2857142857142857 +15.24,53.34,-4.071428571428574,0.14514285714285727,0.2857142857142857 +15.24,50.8,-3.800000000000003,0.0725714285714287,0.30000000000000004 +15.494,53.34,-3.242857142857146,0.10885714285714299,0.29047619047619044 +17.526,55.88,-1.9857142857142882,0.43542857142857155,0.3136363636363636 +18.796000000000003,60.96,-1.0571428571428594,0.6168571428571431,0.3083333333333334 +18.796000000000003,53.34,-0.35714285714285937,0.6894285714285715,0.3523809523809524 +18.796000000000003,55.88,0.4714285714285693,0.6531428571428572,0.3363636363636364 +20.573999999999998,83.82000000000001,-0.28571428571428814,0.870857142857143,0.2454545454545454 +21.59,83.82000000000001,-0.8428571428571452,1.0160000000000002,0.25757575757575757 +22.352000000000004,91.44,-1.0000000000000022,1.124857142857143,0.2444444444444445 +22.606,86.36,-1.2428571428571453,0.8345714285714286,0.26176470588235295 +23.114,91.44,-1.9000000000000024,0.7257142857142859,0.25277777777777777 +23.114,88.9,-2.6000000000000023,0.6531428571428572,0.26 +24.637999999999998,99.06,-3.485714285714288,0.870857142857143,0.2487179487179487 +26.162000000000003,114.3,-3.4714285714285738,0.8708571428571429,0.22888888888888892 +28.447999999999997,137.16,-3.75714285714286,1.0522857142857143,0.2074074074074074 +28.956000000000003,134.62,-4.8000000000000025,1.016,0.21509433962264152 +29.972,134.62,-6.185714285714289,1.124857142857143,0.22264150943396227 +31.242,144.78,-6.7428571428571455,1.2337142857142858,0.21578947368421053 +31.242,134.62,-6.600000000000002,1.3062857142857145,0.2320754716981132 +31.75,137.16,-7.100000000000002,1.1611428571428573,0.23148148148148148 +32.004,137.16,-6.8714285714285745,1.0885714285714287,0.2333333333333333 +32.257999999999996,127.0,-5.942857142857146,0.7982857142857144,0.25399999999999995 +32.257999999999996,121.92,-4.714285714285717,0.6894285714285715,0.2645833333333333 +33.528,139.7,-3.55714285714286,0.7620000000000002,0.24000000000000002 +34.544,142.24,-2.3428571428571456,0.725714285714286,0.24285714285714283 +35.052,127.0,-1.1857142857142884,0.7620000000000001,0.276 +35.306000000000004,129.54,-0.10000000000000266,0.7620000000000001,0.27254901960784317 +36.068,132.08,0.24285714285714022,0.6894285714285715,0.27307692307692305 +37.083999999999996,134.62,0.04285714285714025,0.7982857142857144,0.2754716981132075 +39.116,149.86,-0.38571428571428823,1.0885714285714287,0.26101694915254237 +40.132000000000005,154.94,-0.22857142857143106,1.016,0.259016393442623 +40.132000000000005,149.86,-0.27142857142857413,0.9071428571428573,0.2677966101694915 +40.386,147.32,-0.6285714285714313,0.8345714285714286,0.2741379310344828 +40.132000000000005,132.08,-0.028571428571431134,0.8345714285714286,0.3038461538461539 +40.894000000000005,137.16,-0.20000000000000254,0.8345714285714286,0.2981481481481482 +40.894000000000005,132.08,-1.3000000000000025,0.6894285714285715,0.3096153846153846 +40.894000000000005,132.08,-2.085714285714288,0.3991428571428573,0.3096153846153846 +41.402,132.08,-2.728571428571431,0.362857142857143,0.31346153846153846 +42.418,134.62,-2.3714285714285737,0.5080000000000001,0.3150943396226415 +44.196,137.16,-2.0571428571428596,0.7620000000000002,0.3222222222222222 +45.72,149.86,-2.628571428571431,0.9797142857142858,0.30508474576271183 +46.228,152.4,-3.000000000000002,0.9797142857142858,0.30333333333333334 +46.482,147.32,-2.2428571428571447,1.016,0.31551724137931036 +46.736,144.78,-1.100000000000002,1.0522857142857143,0.32280701754385965 +46.482,144.78,-0.3714285714285736,0.9434285714285716,0.32105263157894737 +46.482,144.78,-0.7285714285714311,0.7620000000000002,0.32105263157894737 +46.482,144.78,-0.914285714285717,0.47171428571428586,0.32105263157894737 +46.482,144.78,-1.5571428571428598,0.2540000000000001,0.32105263157894737 +47.498,144.78,-1.371428571428574,0.2902857142857144,0.32807017543859646 +47.752,154.94,-1.65714285714286,0.2902857142857144,0.3081967213114754 +47.752,152.4,-2.55714285714286,0.2540000000000001,0.31333333333333335 +47.498,149.86,-3.700000000000003,0.2540000000000001,0.3169491525423728 +47.498,147.32,-4.585714285714289,0.2540000000000001,0.32241379310344825 +47.498,147.32,-5.000000000000003,0.2540000000000001,0.32241379310344825 +47.752,144.78,-4.214285714285717,0.2540000000000001,0.3298245614035088 +47.498,144.78,-3.742857142857145,0.10885714285714299,0.32807017543859646 +48.768,157.48,-3.4571428571428595,0.2540000000000001,0.3096774193548387 +48.768,154.94,-3.242857142857145,0.2902857142857144,0.31475409836065577 +48.768,152.4,-1.9142857142857166,0.3265714285714287,0.32 +48.514,149.86,-0.642857142857145,0.3265714285714287,0.32372881355932204 +48.514,147.32,0.2714285714285696,0.3265714285714287,0.32931034482758625 +48.26,147.32,0.47142857142856925,0.2540000000000001,0.3275862068965517 +48.768,154.94,-0.32857142857143057,0.3265714285714287,0.31475409836065577 +48.768,152.4,-0.5142857142857166,0.14514285714285727,0.32 +48.768,149.86,0.09999999999999784,0.14514285714285727,0.3254237288135593 +48.768,149.86,0.07142857142856876,0.10885714285714299,0.3254237288135593 +48.768,149.86,-0.35714285714286,0.10885714285714299,0.3254237288135593 +48.768,147.32,-0.7428571428571457,0.14514285714285727,0.3310344827586207 +49.022000000000006,147.32,-1.1428571428571457,0.18142857142857155,0.3327586206896552 +48.768,147.32,-0.9571428571428598,0.10885714285714299,0.3310344827586207 +48.514,147.32,-0.9857142857142884,0.10885714285714299,0.32931034482758625 +48.514,147.32,-1.2714285714285742,0.0725714285714287,0.32931034482758625 +48.768,147.32,-1.4000000000000026,0.10885714285714299,0.3310344827586207 +48.514,147.32,-1.428571428571431,0.10885714285714299,0.32931034482758625 +48.768,144.78,-1.9714285714285744,0.10885714285714299,0.3368421052631579 +49.53,157.48,-2.742857142857146,0.18142857142857155,0.3145161290322581 +50.038,177.8,-3.700000000000003,0.2902857142857144,0.2814285714285714 +50.546,180.34,-4.300000000000003,0.362857142857143,0.2802816901408451 +51.054,170.18,-4.3000000000000025,0.43542857142857155,0.3 +51.054,165.1,-4.385714285714289,0.43542857142857155,0.30923076923076925 +51.054,162.56,-4.2428571428571455,0.43542857142857155,0.3140625 +51.308,157.48,-3.75714285714286,0.43542857142857155,0.3258064516129032 +51.562000000000005,154.94,-2.628571428571432,0.362857142857143,0.33278688524590166 +51.562000000000005,152.4,-0.7428571428571461,0.2540000000000001,0.3383333333333334 +52.07,149.86,0.8857142857142826,0.2540000000000001,0.34745762711864403 +52.324000000000005,152.4,0.8571428571428541,0.21771428571428583,0.3433333333333334 +52.577999999999996,152.4,0.4571428571428538,0.21771428571428583,0.345 +52.577999999999996,152.4,-0.0857142857142889,0.21771428571428583,0.345 +52.832,152.4,-0.7142857142857173,0.21771428571428583,0.3466666666666667 +52.832,149.86,-1.300000000000003,0.21771428571428583,0.3525423728813559 +52.832,147.32,-1.6571428571428601,0.21771428571428583,0.3586206896551724 +53.594,147.32,-2.0142857142857173,0.2540000000000001,0.36379310344827587 +56.13400000000001,172.72,-2.0142857142857173,0.5805714285714287,0.32500000000000007 +56.388,170.18,-2.171428571428574,0.5805714285714287,0.33134328358208953 +56.642,165.1,-2.171428571428574,0.6168571428571431,0.3430769230769231 +56.642,167.64000000000001,-2.3428571428571456,0.5805714285714288,0.3378787878787879 +56.895999999999994,165.1,-2.9428571428571457,0.5805714285714287,0.3446153846153846 +57.404,165.1,-3.7142857142857166,0.6531428571428572,0.34769230769230774 +57.15,165.1,-4.014285714285717,0.5442857142857144,0.34615384615384615 +57.15,160.02,-3.500000000000003,0.18142857142857155,0.3571428571428571 +57.15,157.48,-2.4000000000000035,0.14514285714285727,0.3629032258064516 +57.15,152.4,-1.185714285714289,0.10885714285714299,0.375 +56.895999999999994,142.24,0.6571428571428533,0.10885714285714299,0.3999999999999999 +56.388,142.24,2.5428571428571396,0.0725714285714287,0.3964285714285714 +55.626,142.24,3.514285714285711,0.0,0.3910714285714285 +55.626,139.7,3.6714285714285677,0.0,0.3981818181818182 +55.372,137.16,3.6142857142857108,0.0,0.40370370370370373 +54.355999999999995,134.62,3.828571428571425,0.0,0.40377358490566034 +54.355999999999995,132.08,3.599999999999997,0.0,0.41153846153846146 +53.848,132.08,2.699999999999997,0.0,0.40769230769230763 +52.577999999999996,129.54,2.5857142857142827,0.0,0.40588235294117647 +51.815999999999995,127.0,2.8285714285714256,0.0,0.408 +50.8,121.92,3.5714285714285685,0.0,0.41666666666666663 +49.53,119.38,4.34285714285714,0.0,0.41489361702127664 +48.26,114.3,4.228571428571426,0.0,0.4222222222222222 +47.24400000000001,114.3,4.3857142857142835,0.036285714285714414,0.4133333333333334 +45.974000000000004,109.22,4.428571428571426,0.036285714285714414,0.42093023255813955 +44.70400000000001,106.68,3.999999999999997,0.036285714285714414,0.4190476190476191 +43.434000000000005,104.14,3.9142857142857115,0.10885714285714299,0.41707317073170735 +42.164,101.6,3.871428571428569,0.14514285714285727,0.41500000000000004 +40.132000000000005,96.52,3.4999999999999973,0.14514285714285727,0.4157894736842106 +38.354,91.44,3.8999999999999972,0.18142857142857155,0.41944444444444445 +36.322,83.82000000000001,4.499999999999997,0.14514285714285727,0.43333333333333335 +35.814,81.28,4.414285714285711,0.14514285714285727,0.440625 +33.782000000000004,78.74,4.34285714285714,0.14514285714285727,0.4290322580645162 +33.02,76.2,4.1999999999999975,0.14514285714285727,0.43333333333333335 +33.274,76.2,3.571428571428569,0.14514285714285727,0.43666666666666665 +30.988,71.12,3.4571428571428546,0.18142857142857155,0.43571428571428567 +29.972,68.58,3.314285714285712,0.18142857142857155,0.43703703703703706 +29.972,68.58,2.1714285714285686,0.18142857142857155,0.43703703703703706 +29.21,66.04,2.3428571428571394,0.21771428571428583,0.4423076923076923 +26.162000000000003,60.96,2.7714285714285682,0.2540000000000001,0.4291666666666667 +23.114,53.34,3.699999999999996,0.18142857142857155,0.4333333333333333 +20.32,50.8,5.042857142857139,0.14514285714285727,0.4 +18.288,45.72,5.5714285714285685,0.10885714285714299,0.4 +16.764,43.18,5.285714285714283,0.10885714285714299,0.38823529411764707 +14.478000000000002,38.1,5.799999999999997,0.10885714285714299,0.38 +13.716000000000001,35.56,5.84285714285714,0.14514285714285727,0.38571428571428573 +11.43,30.48,5.599999999999997,0.10885714285714299,0.375 +10.16,25.4,5.114285714285712,0.18142857142857155,0.4 +7.8740000000000006,22.86,4.499999999999997,0.18142857142857155,0.3444444444444445 +6.35,17.78,4.171428571428569,0.2540000000000001,0.3571428571428571 +4.318,12.7,4.185714285714282,0.2540000000000001,0.33999999999999997 +3.302,22.86,-3.9428571428571457,0.5442857142857144,0.14444444444444446 +6.35,48.26,-4.05714285714286,0.9071428571428573,0.13157894736842105 +9.652,76.2,-4.000000000000003,1.378857142857143,0.12666666666666665 +9.906,66.04,-3.2285714285714318,1.4514285714285715,0.15 +11.176000000000002,68.58,-2.5142857142857173,1.5239999999999998,0.162962962962963 +11.684,63.5,-1.7000000000000028,1.3425714285714287,0.184 +12.446000000000002,66.04,-1.214285714285717,1.4514285714285717,0.18846153846153846 +12.7,66.04,-1.0142857142857171,1.4151428571428573,0.1923076923076923 +12.7,58.42,-0.85714285714286,0.9797142857142858,0.21739130434782608 +12.446000000000002,60.96,-0.3142857142857171,0.5080000000000001,0.2041666666666667 +12.953999999999999,55.88,-0.1285714285714314,0.5080000000000001,0.23181818181818178 +12.953999999999999,60.96,-0.6000000000000032,0.3265714285714287,0.21249999999999997 +13.208,60.96,-0.9857142857142888,0.2902857142857144,0.21666666666666667 +13.208,60.96,-1.2285714285714318,0.2540000000000001,0.21666666666666667 +13.208,58.42,-0.9285714285714322,0.18142857142857155,0.22608695652173913 +13.208,58.42,-0.22857142857143234,0.18142857142857155,0.22608695652173913 +13.208,55.88,-0.2714285714285752,0.18142857142857155,0.23636363636363636 +13.208,55.88,-0.48571428571428943,0.10885714285714299,0.23636363636363636 +13.97,60.96,-0.5857142857142892,0.21771428571428583,0.22916666666666669 +13.97,60.96,-1.228571428571432,0.18142857142857155,0.22916666666666669 +13.97,55.88,-1.1428571428571463,0.14514285714285727,0.25 +14.223999999999998,55.88,-0.7142857142857176,0.18142857142857155,0.2545454545454545 +14.223999999999998,55.88,-0.8571428571428602,0.18142857142857155,0.2545454545454545 +14.223999999999998,55.88,-0.8857142857142887,0.18142857142857155,0.2545454545454545 +14.223999999999998,53.34,-0.571428571428574,0.18142857142857155,0.2666666666666666 +14.478000000000002,53.34,0.8428571428571404,0.10885714285714299,0.27142857142857146 +14.478000000000002,50.8,2.442857142857141,0.10885714285714299,0.28500000000000003 +14.478000000000002,50.8,2.5714285714285694,0.0725714285714287,0.28500000000000003 +14.223999999999998,50.8,1.6714285714285693,0.036285714285714414,0.27999999999999997 +14.223999999999998,48.26,0.6142857142857121,0.036285714285714414,0.29473684210526313 +13.716000000000001,48.26,-0.2571428571428594,0.036285714285714414,0.2842105263157895 +14.478000000000002,53.34,-0.9000000000000028,0.14514285714285727,0.27142857142857146 +14.732,55.88,-2.3000000000000034,0.14514285714285727,0.2636363636363636 +14.986,55.88,-3.3714285714285745,0.21771428571428583,0.2681818181818182 +17.018,71.12,-3.2428571428571464,0.5080000000000001,0.23928571428571427 +17.272,71.12,-3.0142857142857173,0.5442857142857144,0.24285714285714283 +18.034,76.2,-2.500000000000003,0.6531428571428572,0.23666666666666664 +19.304,78.74,-1.6571428571428604,0.8345714285714286,0.24516129032258063 +20.828,83.82000000000001,-1.2428571428571458,0.9797142857142858,0.24848484848484845 +21.082,78.74,-0.65714285714286,1.0160000000000002,0.267741935483871 +21.336000000000002,76.2,-1.3857142857142886,0.9797142857142858,0.28 +21.59,73.66,-1.7428571428571458,0.7620000000000001,0.2931034482758621 +21.336000000000002,73.66,-1.2714285714285742,0.7257142857142858,0.2896551724137931 +22.352000000000004,81.28,-1.2857142857142887,0.7982857142857144,0.275 +22.606,81.28,-1.6000000000000032,0.6531428571428572,0.278125 +22.606,81.28,-2.0285714285714316,0.3991428571428572,0.278125 +22.606,81.28,-2.7285714285714318,0.3265714285714286,0.278125 +22.86,81.28,-1.9571428571428608,0.362857142857143,0.28125 +24.13,91.44,-1.7000000000000033,0.4717142857142859,0.2638888888888889 +24.637999999999998,96.52,-1.928571428571432,0.5442857142857145,0.25526315789473686 +25.146,93.98,-1.571428571428575,0.43542857142857155,0.26756756756756755 +26.416,96.52,-1.2857142857142894,0.5805714285714287,0.2736842105263158 +27.432000000000002,104.14,-1.0714285714285747,0.7257142857142859,0.2634146341463415 +30.226000000000003,127.0,-0.7285714285714319,1.124857142857143,0.23800000000000002 +31.242,127.0,-0.9714285714285747,1.1974285714285717,0.246 +31.242,119.38,-0.8714285714285748,1.0522857142857145,0.2617021276595745 +31.75,121.92,-1.071428571428575,1.0522857142857145,0.2604166666666667 +32.257999999999996,121.92,-1.6142857142857172,1.0522857142857145,0.2645833333333333 +32.004,119.38,-2.2285714285714318,0.9071428571428574,0.2680851063829787 +32.257999999999996,116.84,-1.985714285714289,0.7982857142857144,0.2760869565217391 +34.798,134.62,-1.8571428571428605,0.7620000000000002,0.25849056603773585 +39.116,119.38,-1.0571428571428607,1.2337142857142858,0.32765957446808514 +36.322,119.38,-1.428571428571432,1.3062857142857145,0.3042553191489362 +35.814,116.84,-1.2571428571428604,1.27,0.3065217391304348 +36.068,114.3,-0.771428571428575,1.2337142857142858,0.31555555555555553 +35.814,114.3,0.17142857142856815,1.2337142857142862,0.31333333333333335 +36.322,114.3,0.27142857142856797,1.27,0.3177777777777778 +36.322,114.3,0.057142857142853797,0.9071428571428574,0.3177777777777778 +36.322,111.76,-0.4428571428571459,0.29028571428571454,0.325 +36.322,111.76,0.31428571428571134,0.1814285714285717,0.325 +36.322,114.3,-0.01428571428571728,0.1451428571428574,0.3177777777777778 +36.068,111.76,-0.9000000000000028,0.10885714285714311,0.3227272727272727 +35.814,111.76,-1.7285714285714313,0.07257142857142883,0.32045454545454544 +35.814,116.84,-2.428571428571431,0.0,0.3065217391304348 +35.56,111.76,-3.200000000000003,0.0,0.3181818181818182 +36.322,124.46000000000001,-4.414285714285717,0.1451428571428574,0.29183673469387755 +37.083999999999996,132.08,-5.428571428571431,0.32657142857142885,0.2807692307692307 +37.083999999999996,137.16,-5.35714285714286,0.32657142857142885,0.27037037037037037 +37.083999999999996,137.16,-5.228571428571432,0.3628571428571431,0.27037037037037037 +38.1,144.78,-5.000000000000003,0.5442857142857146,0.2631578947368421 +39.878,147.32,-4.4285714285714315,0.7982857142857146,0.2706896551724138 +41.147999999999996,157.48,-3.400000000000003,0.9797142857142859,0.26129032258064516 +42.164,160.02,-2.6000000000000036,0.9797142857142859,0.2634920634920635 +42.418,157.48,-2.4142857142857177,0.8345714285714287,0.2693548387096774 +42.672000000000004,152.4,-2.3571428571428608,0.8708571428571431,0.28 +42.925999999999995,149.86,-1.8428571428571463,0.9071428571428574,0.2864406779661016 +42.672000000000004,147.32,-1.7428571428571458,0.725714285714286,0.2896551724137931 +42.672000000000004,144.78,-2.3857142857142892,0.4717142857142859,0.2947368421052632 +42.672000000000004,144.78,-3.500000000000003,0.29028571428571454,0.2947368421052632 +42.672000000000004,142.24,-4.314285714285717,0.1451428571428574,0.3 +42.672000000000004,142.24,-4.75714285714286,0.10885714285714311,0.3 +43.942,154.94,-6.228571428571432,0.2540000000000003,0.2836065573770492 +45.465999999999994,165.1,-8.514285714285718,0.3991428571428574,0.27538461538461534 +46.736,180.34,-10.500000000000004,0.6531428571428574,0.2591549295774648 +47.752,187.96,-10.742857142857147,0.7982857142857146,0.25405405405405407 +49.275999999999996,198.12,-9.914285714285716,1.0522857142857145,0.2487179487179487 +49.784000000000006,190.5,-9.142857142857148,1.124857142857143,0.26133333333333336 +49.784000000000006,200.66,-8.88571428571429,1.124857142857143,0.24810126582278486 +50.546,185.42000000000002,-7.728571428571432,1.0522857142857145,0.2726027397260274 +51.054,185.42000000000002,-5.828571428571431,0.9071428571428574,0.27534246575342464 +51.054,180.34,-4.200000000000003,0.725714285714286,0.2830985915492958 +52.324000000000005,185.42000000000002,-3.471428571428574,0.7620000000000002,0.2821917808219178 +54.355999999999995,193.04,-3.35714285714286,0.8345714285714289,0.28157894736842104 +55.626,200.66,-3.6428571428571455,0.9434285714285717,0.2772151898734177 +56.13400000000001,195.58,-3.685714285714288,1.0160000000000002,0.28701298701298705 +57.404,203.2,-3.614285714285717,1.124857142857143,0.28250000000000003 +59.436,215.9,-3.8142857142857167,1.378857142857143,0.2752941176470588 +59.69,210.82,-3.9857142857142884,1.342571428571429,0.28313253012048195 +59.69,205.74,-3.7285714285714318,1.197428571428572,0.2901234567901234 +59.69,200.66,-3.2714285714285745,0.8708571428571431,0.2974683544303797 +59.69,195.58,-2.500000000000003,0.6894285714285717,0.3051948051948052 +59.69,195.58,-1.5714285714285745,0.6168571428571431,0.3051948051948052 +59.944,190.5,-0.7857142857142886,0.43542857142857166,0.3146666666666667 +60.452000000000005,195.58,-0.028571428571431582,0.1814285714285717,0.3090909090909091 +60.452000000000005,190.5,0.28571428571428276,0.1451428571428574,0.31733333333333336 +60.705999999999996,193.04,-0.47142857142857436,0.1451428571428574,0.3144736842105263 +60.705999999999996,190.5,-1.5857142857142885,0.1451428571428574,0.31866666666666665 +60.96,187.96,-2.142857142857146,0.1814285714285717,0.32432432432432434 +61.976,200.66,-2.885714285714289,0.3628571428571431,0.30886075949367087 +61.976,195.58,-3.385714285714289,0.32657142857142885,0.3168831168831169 +62.230000000000004,193.04,-3.2142857142857166,0.29028571428571454,0.32236842105263164 +62.484,187.96,-2.428571428571431,0.32657142857142885,0.3324324324324324 +62.738,187.96,-1.6714285714285742,0.32657142857142885,0.33378378378378376 +62.484,185.42000000000002,-1.5714285714285745,0.32657142857142885,0.336986301369863 +62.738,182.88,-1.0714285714285743,0.32657142857142885,0.34305555555555556 +62.992000000000004,180.34,-0.45714285714286007,0.1814285714285717,0.34929577464788736 +63.5,180.34,-0.04285714285714586,0.2540000000000003,0.352112676056338 +64.008,180.34,-0.5000000000000034,0.29028571428571454,0.3549295774647887 +64.008,177.8,-1.2000000000000033,0.29028571428571454,0.35999999999999993 +64.262,177.8,-1.7714285714285747,0.29028571428571454,0.36142857142857143 +64.008,180.34,-1.5000000000000033,0.32657142857142885,0.3549295774647887 +64.262,177.8,-1.6571428571428604,0.32657142857142885,0.36142857142857143 +65.024,180.34,-1.8142857142857178,0.3991428571428574,0.36056338028169016 +65.024,177.8,-2.1428571428571463,0.3628571428571431,0.3657142857142857 +65.024,177.8,-1.8285714285714314,0.29028571428571454,0.3657142857142857 +66.04,170.18,-0.7142857142857173,0.3991428571428574,0.3880597014925373 +67.31,182.88,-0.3000000000000031,0.5442857142857146,0.3680555555555556 +67.56400000000001,180.34,-0.6285714285714318,0.5805714285714288,0.3746478873239437 +67.56400000000001,177.8,-0.642857142857146,0.5442857142857146,0.38 +68.326,175.26,-0.14285714285714604,0.5442857142857146,0.3898550724637681 +69.088,170.18,0.8142857142857112,0.6168571428571431,0.4059701492537313 +69.342,170.18,1.2571428571428538,0.6531428571428574,0.40746268656716417 +69.85,167.64000000000001,1.1428571428571395,0.5805714285714288,0.4166666666666666 +69.596,165.1,1.2285714285714255,0.3991428571428574,0.4215384615384616 +69.596,165.1,1.9285714285714253,0.32657142857142885,0.4215384615384616 +70.104,160.02,2.7857142857142825,0.3991428571428574,0.43809523809523804 +69.342,162.56,2.6142857142857117,0.32657142857142885,0.4265625 +69.85,167.64000000000001,1.2999999999999972,0.32657142857142885,0.4166666666666666 +70.104,165.1,0.8714285714285689,0.32657142857142885,0.4246153846153846 +70.866,162.56,-0.4428571428571456,0.3628571428571431,0.4359375 +71.882,162.56,-0.8714285714285742,0.5080000000000002,0.4421875 +71.882,162.56,-0.9857142857142885,0.5442857142857146,0.4421875 +72.136,160.02,-1.7142857142857173,0.5080000000000002,0.45079365079365075 +71.37400000000001,157.48,-1.5142857142857176,0.471714285714286,0.453225806451613 +71.12,154.94,-0.22857142857143195,0.3628571428571431,0.45901639344262296 +69.85,149.86,0.5714285714285678,0.32657142857142885,0.46610169491525416 +68.072,144.78,2.342857142857139,0.21771428571428597,0.47017543859649125 +65.786,142.24,4.099999999999996,0.07257142857142883,0.46249999999999997 +64.262,139.7,4.614285714285711,0.03628571428571454,0.46 +63.245999999999995,134.62,5.071428571428568,0.0,0.46981132075471693 +60.705999999999996,132.08,5.514285714285712,0.0,0.45961538461538454 +58.928,127.0,5.414285714285711,0.0,0.46399999999999997 +56.13400000000001,124.46000000000001,5.114285714285712,0.0,0.45102040816326533 +55.626,124.46000000000001,4.142857142857141,0.03628571428571454,0.44693877551020406 +55.626,121.92,2.9285714285714257,0.03628571428571454,0.45625 +55.118,119.38,2.7714285714285687,0.03628571428571454,0.4617021276595745 +53.086,116.84,2.9428571428571395,0.03628571428571454,0.4543478260869565 +51.308,111.76,3.3428571428571394,0.03628571428571454,0.45909090909090905 +49.275999999999996,106.68,4.242857142857138,0.03628571428571454,0.4619047619047618 +45.974000000000004,101.6,4.757142857142853,0.03628571428571454,0.45250000000000007 +43.687999999999995,96.52,5.1857142857142815,0.0,0.4526315789473684 +43.18,93.98,5.414285714285711,0.0,0.45945945945945943 +40.894000000000005,91.44,5.785714285714282,0.0,0.4472222222222223 +40.386,86.36,5.957142857142855,0.0,0.46764705882352947 +36.576,83.82000000000001,5.64285714285714,0.0,0.43636363636363634 +35.052,81.28,5.0142857142857125,0.0,0.43124999999999997 +33.528,81.28,3.7428571428571407,0.0,0.4125 +33.02,76.2,3.142857142857141,0.0,0.43333333333333335 +32.512,73.66,3.1714285714285695,0.03628571428571454,0.44137931034482764 +30.733999999999998,73.66,3.271428571428569,0.03628571428571454,0.41724137931034483 +28.194,66.04,3.499999999999998,0.03628571428571454,0.42692307692307685 +26.67,60.96,3.7857142857142825,0.03628571428571454,0.4375 +22.86,55.88,4.1285714285714255,0.03628571428571454,0.40909090909090906 +20.066000000000003,50.8,5.64285714285714,0.03628571428571454,0.3950000000000001 +17.018,45.72,7.157142857142853,0.03628571428571454,0.37222222222222223 +13.716000000000001,38.1,8.657142857142853,0.0,0.36000000000000004 +10.16,27.94,9.157142857142853,0.0,0.36363636363636365 +8.382,25.4,8.285714285714281,0.0,0.33 +7.111999999999999,22.86,7.042857142857139,0.0,0.31111111111111106 +5.588000000000001,17.78,5.828571428571425,0.03628571428571454,0.31428571428571433 +3.81,15.24,5.028571428571425,0.03628571428571454,0.25 +3.302,10.16,1.6428571428571395,0.7982857142857146,0.325 +3.048,22.86,0.028571428571425424,0.6894285714285717,0.13333333333333333 +4.572,27.94,-0.5142857142857177,0.8345714285714289,0.16363636363636364 +4.826,30.48,-1.4285714285714322,0.8708571428571431,0.15833333333333333 +4.826,15.24,-1.0571428571428607,1.3062857142857145,0.31666666666666665 +3.048,10.16,0.3142857142857109,0.47171428571428603,0.3 +3.048,10.16,-0.3000000000000033,0.3628571428571431,0.3 +3.048,10.16,-0.642857142857146,0.3628571428571431,0.3 +3.302,10.16,-0.41428571428571775,0.39914285714285747,0.325 +3.302,15.24,-0.10000000000000339,0.3628571428571431,0.21666666666666667 +3.5559999999999996,12.7,0.6428571428571397,0.39914285714285735,0.27999999999999997 +3.81,10.16,1.199999999999997,0.21771428571428597,0.375 +3.81,7.62,1.557142857142854,0.1451428571428574,0.5 +3.5559999999999996,5.08,2.357142857142854,0.2540000000000003,0.7 +8.636,38.1,-4.814285714285718,0.8708571428571431,0.22666666666666663 +9.144,45.72,-5.328571428571432,0.9434285714285718,0.2 +9.144,40.64,-5.1857142857142895,0.8708571428571431,0.225 +9.652,43.18,-5.485714285714288,0.8345714285714287,0.22352941176470587 +11.43,60.96,-5.271428571428574,0.7982857142857146,0.1875 +11.684,55.88,-5.242857142857146,0.6894285714285716,0.20909090909090908 +12.7,60.96,-4.828571428571432,0.6531428571428574,0.20833333333333331 +12.953999999999999,60.96,-3.571428571428575,0.6894285714285716,0.21249999999999997 +13.462,63.5,-2.7142857142857175,0.6894285714285716,0.212 +15.748000000000001,83.82000000000001,-2.700000000000003,0.9797142857142859,0.18787878787878787 +16.51,88.9,-2.6571428571428606,1.0160000000000002,0.18571428571428572 +17.018,91.44,-3.6000000000000028,0.8345714285714289,0.18611111111111112 +17.78,91.44,-4.414285714285717,0.9071428571428575,0.19444444444444448 +17.78,86.36,-6.014285714285718,0.725714285714286,0.2058823529411765 +18.034,76.2,-7.442857142857146,0.7620000000000003,0.23666666666666664 +18.034,81.28,-8.857142857142861,0.6894285714285717,0.221875 +19.05,86.36,-9.271428571428574,0.5080000000000002,0.22058823529411767 +32.766,144.78,-3.9285714285714315,1.995714285714286,0.2263157894736842 +32.766,139.7,-3.8714285714285745,1.9594285714285715,0.23454545454545456 +33.02,134.62,-3.7714285714285745,1.741714285714286,0.24528301886792456 +33.02,132.08,-2.9285714285714315,1.3062857142857145,0.25 +33.02,121.92,-1.7857142857142887,1.1248571428571432,0.27083333333333337 +33.274,119.38,-0.25714285714286056,0.8708571428571431,0.27872340425531916 +33.274,116.84,-0.1428571428571459,0.32657142857142885,0.2847826086956522 +33.274,116.84,0.45714285714285374,0.1814285714285717,0.2847826086956522 +33.02,114.3,1.8285714285714252,0.1814285714285717,0.2888888888888889 +33.02,116.84,2.8999999999999964,0.1451428571428574,0.28260869565217395 +33.02,111.76,3.6857142857142824,0.10885714285714311,0.29545454545454547 +33.02,111.76,3.2428571428571393,0.07257142857142883,0.29545454545454547 +32.766,106.68,2.614285714285711,0.07257142857142883,0.3071428571428571 +33.782000000000004,104.14,2.599999999999997,0.1814285714285717,0.32439024390243903 +33.782000000000004,104.14,2.7857142857142825,0.1814285714285717,0.32439024390243903 +33.02,104.14,2.914285714285711,0.1814285714285717,0.3170731707317073 +33.02,101.6,3.357142857142854,0.1814285714285717,0.32500000000000007 +33.274,101.6,2.914285714285711,0.21771428571428597,0.3275 +32.257999999999996,101.6,2.985714285714283,0.21771428571428597,0.31749999999999995 +33.02,101.6,3.185714285714283,0.29028571428571454,0.32500000000000007 +33.02,101.6,3.099999999999997,0.1451428571428574,0.32500000000000007 +32.766,71.12,3.271428571428568,0.1451428571428574,0.4607142857142857 +32.766,101.6,2.9571428571428533,0.1814285714285717,0.3225 +33.274,106.68,1.9714285714285675,0.2540000000000003,0.3119047619047619 +33.782000000000004,109.22,0.7857142857142817,0.29028571428571454,0.30930232558139537 +33.528,109.22,-0.18571428571428963,0.29028571428571454,0.3069767441860465 +33.528,106.68,-1.2714285714285753,0.21771428571428597,0.3142857142857143 +33.782000000000004,106.68,-1.5285714285714325,0.2540000000000003,0.3166666666666667 +33.528,104.14,-1.9142857142857181,0.2540000000000003,0.32195121951219513 +33.782000000000004,106.68,-2.0857142857142894,0.2540000000000003,0.3166666666666667 +33.782000000000004,104.14,-1.428571428571432,0.21771428571428597,0.32439024390243903 +33.782000000000004,104.14,-0.285714285714289,0.1451428571428574,0.32439024390243903 +33.528,104.14,1.1714285714285677,0.1451428571428574,0.32195121951219513 +33.528,104.14,2.9142857142857106,0.10885714285714311,0.32195121951219513 +33.782000000000004,101.6,4.3142857142857105,0.10885714285714311,0.3325000000000001 +33.782000000000004,101.6,4.3142857142857105,0.10885714285714311,0.3325000000000001 +33.528,101.6,4.21428571428571,0.07257142857142883,0.33 +33.782000000000004,101.6,4.157142857142854,0.07257142857142883,0.3325000000000001 +33.782000000000004,99.06,3.6714285714285677,0.07257142857142883,0.34102564102564104 +33.528,99.06,2.9285714285714257,0.07257142857142883,0.3384615384615384 +33.782000000000004,99.06,1.9714285714285678,0.10885714285714311,0.34102564102564104 +33.782000000000004,101.6,1.1142857142857108,0.10885714285714311,0.3325000000000001 +33.782000000000004,109.22,1.5857142857142825,0.10885714285714311,0.30930232558139537 +34.29,106.68,1.471428571428568,0.1814285714285717,0.3214285714285714 +34.798,116.84,0.028571428571425046,0.21771428571428597,0.29782608695652174 +35.052,116.84,-0.928571428571432,0.2540000000000003,0.3 +35.052,119.38,-2.8714285714285745,0.2540000000000003,0.2936170212765958 +35.56,116.84,-4.814285714285718,0.29028571428571454,0.30434782608695654 +35.306000000000004,116.84,-6.385714285714289,0.2540000000000003,0.3021739130434783 +35.306000000000004,116.84,-7.871428571428575,0.2540000000000003,0.3021739130434783 +35.814,121.92,-8.35714285714286,0.29028571428571454,0.29375 +37.338,129.54,-7.600000000000004,0.43542857142857166,0.2882352941176471 +38.354,114.3,-6.05714285714286,1.0885714285714287,0.33555555555555555 +37.846000000000004,109.22,-3.5000000000000036,1.1248571428571432,0.34651162790697676 +38.1,106.68,-1.3571428571428608,1.0885714285714287,0.35714285714285715 +38.608,109.22,-0.44285714285714634,1.1611428571428575,0.35348837209302325 +38.608,116.84,-3.2989484160290367e-15,1.1611428571428575,0.33043478260869563 +38.862,119.38,0.071428571428568,1.0885714285714287,0.32553191489361705 +38.608,109.22,-0.10000000000000317,0.8708571428571431,0.35348837209302325 +38.608,106.68,-0.2571428571428601,0.1814285714285717,0.36190476190476184 +38.862,111.76,-0.900000000000003,0.1814285714285717,0.3477272727272727 +38.862,116.84,-2.4142857142857177,0.1451428571428574,0.33260869565217394 +38.862,121.92,-2.3714285714285745,0.21771428571428597,0.31875000000000003 +39.37,121.92,-1.542857142857146,0.29028571428571454,0.32291666666666663 +39.116,101.6,-0.8714285714285748,0.29028571428571454,0.385 +39.37,111.76,-0.8714285714285747,0.32657142857142885,0.35227272727272724 +39.624,111.76,-1.128571428571432,0.3991428571428574,0.35454545454545455 +40.894000000000005,121.92,-0.9571428571428605,0.5442857142857146,0.3354166666666667 +41.402,121.92,0.07142857142856814,0.6168571428571431,0.33958333333333335 +41.147999999999996,124.46000000000001,0.3428571428571394,0.5080000000000002,0.33061224489795915 +41.402,121.92,-0.01428571428571774,0.471714285714286,0.33958333333333335 +41.147999999999996,124.46000000000001,-0.6714285714285749,0.43542857142857166,0.33061224489795915 +41.402,121.92,-1.1142857142857179,0.43542857142857166,0.33958333333333335 +41.402,116.84,-0.9714285714285753,0.43542857142857166,0.35434782608695653 +41.147999999999996,114.3,0.07142857142856787,0.2540000000000003,0.36 +41.147999999999996,114.3,0.9857142857142824,0.1814285714285717,0.36 +41.402,111.76,0.9857142857142824,0.1814285714285717,0.3704545454545454 +41.147999999999996,111.76,1.414285714285711,0.1451428571428574,0.3681818181818181 +40.894000000000005,104.14,2.385714285714282,0.1451428571428574,0.39268292682926836 +40.64,106.68,3.7999999999999963,0.10885714285714311,0.38095238095238093 +40.132000000000005,101.6,4.357142857142854,0.03628571428571454,0.3950000000000001 +39.624,101.6,4.028571428571426,0.03628571428571454,0.39000000000000007 +39.624,101.6,3.185714285714282,0.03628571428571454,0.39000000000000007 +40.132000000000005,101.6,2.7571428571428536,0.07257142857142883,0.3950000000000001 +39.624,99.06,2.4714285714285684,0.10885714285714311,0.4 +40.132000000000005,99.06,1.6714285714285684,0.1814285714285717,0.4051282051282052 +39.624,99.06,0.8571428571428541,0.1814285714285717,0.4 +44.45,147.32,-0.3714285714285745,0.8708571428571431,0.30172413793103453 +45.212,142.24,-1.700000000000003,0.9797142857142858,0.31785714285714284 +45.465999999999994,132.08,-1.8000000000000032,1.0160000000000002,0.3442307692307692 +45.212,124.46000000000001,-0.6714285714285747,0.9434285714285716,0.363265306122449 +45.72,127.0,-0.8714285714285749,0.9797142857142859,0.36 +46.228,129.54,-1.4571428571428606,0.9797142857142859,0.3568627450980392 +47.24400000000001,132.08,-2.285714285714289,1.124857142857143,0.3576923076923077 +49.784000000000006,160.02,-2.55714285714286,0.8345714285714289,0.3111111111111111 +50.8,162.56,-2.6571428571428606,0.8708571428571431,0.3125 +52.324000000000005,172.72,-3.342857142857146,1.0522857142857147,0.30294117647058827 +52.324000000000005,167.64000000000001,-5.014285714285718,1.0522857142857147,0.31212121212121213 +53.34,167.64000000000001,-5.828571428571431,1.1248571428571432,0.3181818181818182 +53.34,167.64000000000001,-5.814285714285718,1.1248571428571432,0.3181818181818182 +53.848,160.02,-5.514285714285718,1.0522857142857147,0.3365079365079365 +54.864000000000004,167.64000000000001,-4.942857142857146,0.7982857142857146,0.32727272727272727 +55.118,157.48,-4.471428571428575,0.6894285714285717,0.35000000000000003 +55.88,162.56,-3.9428571428571466,0.5805714285714288,0.34375 +56.642,160.02,-3.085714285714289,0.6894285714285717,0.353968253968254 +56.13400000000001,152.4,-2.2428571428571464,0.5805714285714288,0.36833333333333335 +56.13400000000001,144.78,-1.2428571428571462,0.5080000000000002,0.3877192982456141 +55.88,144.78,-0.21428571428571722,0.43542857142857166,0.3859649122807018 +55.372,139.7,0.37142857142856844,0.29028571428571454,0.3963636363636364 +55.372,142.24,0.45714285714285435,0.2540000000000003,0.38928571428571423 +55.88,139.7,0.7714285714285687,0.21771428571428597,0.4000000000000001 +55.372,139.7,0.74285714285714,0.1451428571428574,0.3963636363636364 +55.372,139.7,0.8857142857142826,0.1814285714285717,0.3963636363636364 +55.372,137.16,0.799999999999997,0.29028571428571454,0.40370370370370373 +55.118,132.08,0.8142857142857113,0.29028571428571454,0.41730769230769227 +56.388,88.9,0.6571428571428543,0.5080000000000002,0.6342857142857142 +55.372,134.62,1.5142857142857113,0.5080000000000002,0.4113207547169811 +53.848,127.0,2.928571428571426,0.43542857142857166,0.424 +52.577999999999996,124.46000000000001,3.3857142857142835,0.471714285714286,0.4224489795918367 +54.355999999999995,129.54,3.4571428571428555,0.6531428571428574,0.4196078431372549 +54.61,132.08,3.0285714285714262,0.5805714285714288,0.41346153846153844 +54.61,132.08,2.085714285714283,0.6168571428571431,0.41346153846153844 +54.61,129.54,1.6428571428571404,0.39914285714285735,0.4215686274509804 +53.848,127.0,0.9857142857142832,0.39914285714285735,0.424 +52.07,124.46000000000001,-0.11428571428571736,0.39914285714285735,0.4183673469387755 +52.577999999999996,132.08,-0.6285714285714317,0.39914285714285735,0.398076923076923 +53.34,127.0,-1.0000000000000033,0.2540000000000003,0.42000000000000004 +51.562000000000005,124.46000000000001,-0.24285714285714605,0.3991428571428574,0.4142857142857143 +50.8,119.38,0.8999999999999968,0.471714285714286,0.425531914893617 +49.784000000000006,119.38,1.6142857142857108,0.471714285714286,0.4170212765957447 +47.752,114.3,2.3714285714285674,0.471714285714286,0.4177777777777778 +46.482,111.76,2.4857142857142827,0.471714285714286,0.4159090909090909 +46.482,111.76,2.4857142857142827,0.3991428571428574,0.4159090909090909 +46.736,111.76,2.8428571428571403,0.32657142857142885,0.41818181818181815 +45.465999999999994,106.68,2.4999999999999973,0.21771428571428597,0.4261904761904761 +43.434000000000005,104.14,2.3571428571428545,0.1451428571428574,0.41707317073170735 +42.164,101.6,2.6571428571428544,0.1451428571428574,0.41500000000000004 +40.894000000000005,99.06,2.799999999999997,0.1814285714285717,0.41282051282051285 +37.846000000000004,91.44,3.5142857142857116,0.1814285714285717,0.4138888888888889 +36.068,83.82000000000001,4.871428571428568,0.21771428571428597,0.43030303030303024 +33.782000000000004,78.74,5.157142857142854,0.21771428571428597,0.4290322580645162 +33.02,76.2,5.3714285714285674,0.21771428571428597,0.43333333333333335 +31.242,73.66,5.014285714285711,0.1814285714285717,0.4241379310344828 +30.226000000000003,66.04,4.628571428571425,0.1814285714285717,0.4576923076923077 +28.194,55.88,4.685714285714282,0.1451428571428574,0.5045454545454545 +26.67,55.88,4.757142857142854,0.1814285714285717,0.4772727272727273 +24.637999999999998,48.26,4.714285714285711,0.39914285714285735,0.5105263157894737 +22.352000000000004,43.18,5.114285714285711,0.39914285714285735,0.5176470588235295 +20.828,38.1,5.614285714285712,0.39914285714285735,0.5466666666666666 +16.764,33.02,6.185714285714283,0.5805714285714288,0.5076923076923077 +13.716000000000001,27.94,6.528571428571425,0.5805714285714288,0.4909090909090909 +10.414,20.32,6.657142857142854,0.5805714285714288,0.5125 +7.366,15.24,6.799999999999997,0.5442857142857145,0.4833333333333333 +4.572,7.62,6.928571428571425,0.47171428571428603,0.6 +3.048,17.78,-0.8428571428571459,1.4514285714285717,0.17142857142857143 +4.572,22.86,-1.8285714285714312,1.5965714285714288,0.2 +4.572,22.86,-2.8000000000000034,1.7780000000000002,0.2 +4.572,17.78,-3.3428571428571456,1.7780000000000002,0.2571428571428571 +4.826,20.32,-3.328571428571432,1.8142857142857145,0.2375 +4.826,20.32,-3.2714285714285745,1.632857142857143,0.2375 +5.08,22.86,-4.342857142857146,0.580571428571429,0.22222222222222224 +5.08,22.86,-4.300000000000003,0.4717142857142861,0.22222222222222224 +5.08,20.32,-3.9285714285714315,0.2540000000000004,0.25 +4.826,12.7,-3.642857142857146,0.07257142857142895,0.38 +5.08,20.32,-2.771428571428575,0.10885714285714324,0.25 +5.08,20.32,-1.6428571428571463,0.07257142857142895,0.25 +4.572,20.32,-2.1571428571428606,0.07257142857142895,0.225 +4.572,20.32,-2.3857142857142892,0.036285714285714664,0.225 +4.572,20.32,-2.142857142857146,0.036285714285714664,0.225 +4.826,20.32,-1.5000000000000033,0.14514285714285752,0.2375 +5.3340000000000005,17.78,-0.5857142857142889,0.2177142857142861,0.3 +6.8580000000000005,22.86,-0.40000000000000274,0.3991428571428575,0.30000000000000004 +6.8580000000000005,22.86,-0.9857142857142882,0.43542857142857183,0.30000000000000004 +7.366,20.32,0.6714285714285692,0.5080000000000003,0.3625 +7.366,22.86,1.9571428571428549,0.5080000000000003,0.3222222222222222 +7.366,22.86,1.9999999999999976,0.5442857142857147,0.3222222222222222 +8.636,35.56,0.957142857142855,0.6168571428571433,0.24285714285714283 +8.636,33.02,-0.5714285714285741,0.580571428571429,0.2615384615384615 +10.668000000000001,50.8,-1.8857142857142886,0.6531428571428576,0.21000000000000002 +12.446000000000002,66.04,-2.428571428571431,0.8708571428571432,0.18846153846153846 +12.7,66.04,-4.185714285714289,0.8345714285714291,0.1923076923076923 +12.953999999999999,60.96,-5.7428571428571455,0.8708571428571431,0.21249999999999997 +12.7,55.88,-6.6714285714285735,0.8345714285714289,0.22727272727272724 +13.716000000000001,60.96,-7.15714285714286,0.7982857142857147,0.225 +13.716000000000001,55.88,-6.528571428571431,0.7620000000000003,0.24545454545454545 +13.716000000000001,55.88,-5.842857142857146,0.5080000000000003,0.24545454545454545 +13.716000000000001,50.8,-5.628571428571431,0.2540000000000004,0.27 +14.223999999999998,55.88,-5.100000000000002,0.29028571428571465,0.2545454545454545 +16.764,81.28,-4.714285714285717,0.6168571428571433,0.20625 +19.05,93.98,-3.885714285714289,0.9434285714285718,0.20270270270270271 +19.558,91.44,-3.200000000000003,0.8708571428571432,0.2138888888888889 +19.304,88.9,-3.6000000000000028,0.8708571428571432,0.2171428571428571 +19.558,88.9,-3.628571428571431,0.8708571428571431,0.21999999999999997 +19.304,83.82000000000001,-3.5428571428571454,0.8708571428571431,0.23030303030303026 +19.304,81.28,-3.6285714285714312,0.7982857142857147,0.2375 +19.558,81.28,-3.028571428571432,0.4717142857142861,0.240625 +19.304,73.66,-2.885714285714289,0.14514285714285752,0.26206896551724135 +19.812,83.82000000000001,-3.3000000000000034,0.14514285714285752,0.23636363636363636 +20.573999999999998,88.9,-3.4857142857142884,0.2540000000000004,0.2314285714285714 +22.098,101.6,-3.5571428571428605,0.43542857142857183,0.2175 +21.59,93.98,-5.128571428571432,0.43542857142857183,0.22972972972972971 +21.843999999999998,91.44,-7.25714285714286,0.4717142857142861,0.23888888888888887 +29.21,101.6,0.21428571428571072,1.4514285714285717,0.28750000000000003 diff --git a/book/tutorials/NN_with_Pytorch/images/ML_flowchart.jpeg b/book/tutorials/NN_with_Pytorch/images/ML_flowchart.jpeg new file mode 100644 index 0000000000000000000000000000000000000000..6f63ae2903673c42abac0c6cdf842611c1ae7b81 GIT binary patch literal 70321 zcmeFZd0d)T`Zr8svo)*1C5cP*AKs_JCco>+G(x0Kkp_Z~?G?@7{fT_w3)dZ{L9f``WJEftnc1l(Cy$=j^-qSp*rK)s zzO!ea+^+q*Wp{m!?E>tQ+r8_Z0|$@o+rN9)t^qL(+}oOUl^Rf zq;2~LKi;scf>Up6etZ2~IRLPGm#l)lvU|GnvgF;eOYZHT><1vLT>dyn?tLKqo%0{> z(G36OD+O@nUc2fY~>HDe8Yh|1$#re;fh1;TdrvE^Q0bS^O#Q%2c;B z{q|zfe_FWW zl+MYR$PIGWeQEa1dh;z_;7gJ5-J)*0xb{|W)opQ=7;xZH*GqSUI}B{y%I^9P zcFh!6XZJXrpBrC+kv?txpX~o1ADMT2etxUDT^G$dE&MWZg-c?SM4eM2_+?Fyu`trM z7i83_MN`&NwqPe31tp{T={T0>aN}_AM%WejjaT3pAd%Z&pbr(0!MGf#U-MMCK99?(xXPTBXE_b z{u+7D;HP#O^{!SW&sQJ=mTRur^`Z0iio$peU|@Cg%GbdpZ=ZO=UlhMwO6Xr7j%lkz30aHs zVEMUgc27VSSqkAMHH}MgMRyNc?f?P|5R!-UFvRg1=oNL6E9r3@MmZorI)yJ`fqRX; z3X`0(f>Tx%W^gr~S5Lh7b6ftw&k2i6%C-A%`k!}o6sxy1QR&RBTSCITgQNMroPfd) zMvu=JdiP#2ax|H-w_4(%Hg44;U80@3rAZt94={Jc*?%y%8zJ0J*8C8tV#}9%_o~u&%#~pI)cXe_I$fZU!AxB9jd?J zZhH0(AUacXQ2r{uHt^u^||al=fTcWP9N!b1%+?)!_QP)vKutt`chX}*4FG&Pto?%*O(O!!0Q z`~0P|jh`FA5XoUJNX`bnWEwkJ19Y>t2#m>CNzEf2AJ6d!F5J^j^)=^Wd!2+fE=TX~ zX<5gXlHUX?jCeCkJz7Pxm&kDeh0JkhAJ4FgaB}ifoNg5<$GRjht*C_>P`5nW6=8ky z+Bav&X6GEJx+#Pf3MC->TyjjH-4Lt(shlb|@gJ3Kne#nzOY{08pXf zv&WE6?;0d&v)TSWg^zvxHjI%#N#p)h(%Dal9cu_e*O0gBOFcrmTd0GDX`c=WWwZm> zPr9j4UpTiJqpgvA+cwfWbV0se zCb5pv00D|ZhcvZyK#g z#x3CuugY5BwiqB7iQvo2_X=0PmyppW#u$rEypdPBaxpP96mG95DcVZ2U4;9$olGG?eAOST(ir4 z#paAq&yJ3<<#Q8b!G+OYua<@ImqO+aK;Po*_?6LeC$@7SZzhuLS5e8Yc5bnHyQAxb;jTH9klH@u4Tg@TPQfb)Hx#{InwK$Vp+&_X zxgB_>)~z(bGwk_^h;ZmK#Ty=v-Lm^{#i-o>AV*8ywm{0G%{4U|&zDv+F-46rlGD3ZxX&P67n zD|N7ts8PowJ%T>&Tu2jG4UU~&^d;;74uu`M?}32Ap@^Tfv9{$Sp+A@S+v0Dx&V?0+ zVVf8D0M}>4qe6|FJAjYZ2(A!{Va}HZ@BQ{Ovea)!!Tl>Pvf&>O@?4QuCC3*|l139G z2cs^P`F!-*)qnWhzkXxiJQ8jvn^y8LP(6EPmvU$YDi+bfY+Q~?ICZ%hM;8`Gv6F6? zxPGv@SMT}D#TwQvt1UN^89S>9aeBC$Nj`o*8E@=&Kl0w;AM4zwIkE!~`lU4O(;1(L z?zLzip{DmWx)ukbI$Bw`u&kD%Evf@USBs>*9DpFovZH*8v zvK;z!7~%=MQGF^AjxG>z`tamY4%swydlUo)+Z=TXv+P*YY-?wBcJ?kVSXHWQMxLh) zijHw>ebXAk+6p;HtG)%pE{jpPXn?BKB7f}gzB9n2WTsiwbxJ?eP61ZtL5Eu+m4+<0 ztuNcIImx}*Rxeb1%wc_J3Jlg|rKIvO-uU#hIpNWvUKjmzyfzG)s2rj$V}p*fnCJ1S~KJ?9#c&z{*5X zU7f2cxLw$(+G7v^uedbOR$~k^tM9}BJIQ_&0o2)h3)PlMY0sebH3*&Ud(KA{tf2F0 z(=P00sB|$vCX00{FeB=!#lsV)G!FPwrc>Vd1^RQ0JkrgU5Z+uD7&6L!0|Qi98B+;$ zoJ@UlXn$&I9(~$5E&jCg)Mv68BX^|JYw}|3DRKZRzs#%s88wz`D{WC>vtx0DghB5; zg-YG}4S^S*H>D$u?aXRgyKOr~eOMwn&SLqhySa}pd@|H*@TMTUCXeZ~xN53P*vh#; zeSZ!9BBaO6HR3X&v*~LWQHp>ZBtQ>YAEs=+R~s2>-4hW_bk_K03C( zD<;t)49Uex)CS`W1DzI7H{<4FXT+1QXLq^S3wvm(wUNLyqqw>A z&V^|le17z!3XMOW3sRQ8JIgg&0g0bcQ_@O{r~z6r1C*e`EQJeuc?Um#(p?VgS7j&A zqWGNrX%x9Obv6vx%R6*m`Sgj(jHk@4G$u34^}EO)`tt-2;0io>x2F%J#cg1vPORc4 zG%dC#Oh6Te50L$W!(pZ==dL6lop(5Lsb65ok90EJXkBz!)XSTVM^Uq`_j}32_z$(T zJNjmM)d*C95!ak=8wNu-@NG9$JFM>2y-@@97#@3CiBc7;6jzBd9u`KUES)p83N++& zGS0#MzNtx@B9`9um{>(;UdF$^A?=Js@O~J+ot2wU28-uUvf&G$!blyx5=id^Kw7?LFrGw`NZ4A zPa_C3@zkW8#cBiYe?#2QXva*!X|Oj9PNNNDQURXAP>^!mbO#1x2Ef974o`Z0 zJQ?(;_kmHJK}&cG;TaeQ2Y9cJL60%mG;^cJIz#V<+%#s^8H!L zlAQP6nXQ)e_WvO$;UrEuHKI1zol|W2Ig1-u5E@*>j*hZruUKd`s7Plje(Bt<)2)?L zH(amXb8x0DmeM6EiO2$Y7v1KY;o6kPJAj3|r2*ap@fOyHO?=x&gS6j9PQ zj@g^>x3AQkWQYY?Uo=FT%w~qritx}c$`Ie)-*Z3K@6yHRtu?o@A`0$=@)Wr!2+~&S z=-leTD62nRGKO$78SyB$ufjgYBch zTg78j$mT_<*A!D>v2Lgz$sv=j6e|xhfTODQ?8}GH3z6py{9YAL(ou9>vh_(Phco@BO<4*d3Xye;0#i*=R>2Q? z4tGpoH`#ILK^2}20kxunJCkXpR4c?``=k?d+d0I@gO-SzK<%FXjc7a1)_I^BT$HzW z?iAGe+zYVu)Q6yGOSgzA0=XbuF$^pZhIA=h!y3miTmqK;9#_QB#Xt%)t6B$5I+uOt(H38)D^fe@? z)AYyqP8-nXC8Rtg+%WpNbI+F6Jj3RXCU*~(iTgCP>#+6|LddCpKCZyH3+D3@DFvy4 z=XS3KN8t@$L{ISoVcq4T2Kgqxd~{K1mI6}t!c9MV`@a5KA1^Y8u0Z%U9cz6`6YcJe zS95;M^8e^}x8rRq+MQbaWp%6OOOvLU!HcOgoM;Sa!I!)UJS9?6yXgty)c6WbCNiZ) zt=x_GO)L0Qq%#(KbAb)@`fkQ5-K*P0{hNxR)Tp-m{;%ZRNBXPK8wkooH?p@8_G(ou zLtkuOy;yLh#a&Aee7Ei)gNVkgGM6^cfkSD9vL%OFoOkym`%_yrwb1)}p2x zIzj#u#PX|=QUAPT!0&Fn8pK$Km5=yI?+$QYZYgX|b=cJHrLDSdhyDqlrqSllSnjZP zQM=Q>WEZvh<@Mq1WBgU}R(=`Uy>``oc_rPHO4SUFnst$=L}Szq3)ce?gNBEnzS*ce z^-$46WNp7#aE z;yOp<7y0H>2FDTe+OdwQwA(NzP3?dHwygthT~Ec^e*5{t4&c3taf6!8?|C@o+tBA5 zn9g)l1NMsV8L~~r`J*r7Rcvje9WE@c?A|CD+_qj>aGfy@aaRcPu6MFi|85#m@F0x) zaG;IJNc!$ctQFIgY0s1Gzd+RU8YiJAr|z-ibLU<)oq0E#n_#mGUsuMEl0ngscr86? zw8ykrkGO)Mgn@%$mQm5OK*-D;8v~c-OA|F1o{@Jd=>x79HK*vpe^h77b2hQuD~K5i zj9q=)yfE$c25&Qstw6ebIl^;s6H@z|op=m<{zKCB?pT*0E26S(+tVj>mfPYamB4~Z zjJQty6R9)M#UiT$W`%AfutTYou>%-dqbhAyy>Y|AcwljA{#g{AACEKV0)aMK%h!C` zX92-+14nyHCwpd4(|kTGKbUDGGm3DHqoO-Eq$?zmvd*T%(|SLr&{U-2mwhZC%YN>+UKatZ3R&JCwUZjVLG%wh(UV zm0j*n@1dnfxX7RdWP z=yl)q@OnRY`iyXmtnF*9eh+$uy*}Pj4=d|jw7rD*IuJkNk%eKTp^5xd(Vj;%xoc6A zhHTDM&lWraJ(W)@#Qg|`I90NP%~-C|tn1OL>*%rmqHZ1 zm1+RJc{F1AxJTjT#4Q!R#=@eo`JeYt{o+NXdC<8_LRtZuqv%DC=gQab0QRP5*N5C$ z{Y->e$3E+>@ZzwB^Cu@r*$VYBI{@v`Mg>-K7U-nKbwP}4QG6B36Pi#MK|6Y?=g8rk zjz)_ZcLt2A)c^xkY-P8$$rIay1AFP}XcNji7*^VW8vcMCi~Vyc~21+j!W3Gq4}ySi3;vtx!( z_R&^{sGvnXvM$T6FCd6njRDq2HA||aom~>lye!)jr%t+tg)1eR_k<6xpS94V(!wE} zH9=J3jL_OCReaCfcHz^Kuh7}I?uRU1~(z+S(VtbIBf!5E2xlASaH327srhB?PlS7Lsku6h)U5M zt&BlfOm5wY*_K@lMp z4n5^OyLjH#ISV1&c11gQfH-e2={gwU>1WrCnY76C3K;1tjAlh~YZUlf;sJ7L=C~{G z<;1-YYR9k5%;QbeXcuq$IYFY4U=+}GqZvnOemz&1>~rMGm`QHLmg!`bF}t5kEQ;mB zP(BBvl#RuYPjKBhgu2ny5 z=j%8m0%nAODKy*36e0QkK=c+4?bida0!|bSpcNF@Ral zO065sp1uHFSho%xMm)>iz%31GDXq*q@j6!@&N?35m(yqY0itw* z|C-SRn^N{|C~o59rEZaFIg2r4UZIGjW${yGIe0VwL&@ly5znTq2vc&MPRv3Kr3G^K zyY63Azw0zDY0U|4q-LV6EmCCVXG|s}!9(%y-q~vQIp9FILNxcWyDUEM2Q6g_Hvx5uvv`mNya3mCb)h_5>gy|YTaxYaR5>C56w&MlOcm>i(#tD8D8 znI{UwHyyKx8G3jn_6v5)&AxMEEym4mFz_uqMX0m0on@=&)7L8>jhcGAl*aH@vqE}; znXf94D0!Fw+{oisLmhB21Fc71${J@KrXp#AHeS_<;iU#%k2=uF2u){9vS2jVsexdE zn7F+0iuCH)paFXJ*j%eR4bNAi4~);+sVw>xpj=iGt_pwM!C%|k{|oy4e*C*K@`CXe z9-G(MS%9TxQf1(!KXB7?Mvo5(7=$^0o+h(_xYH`xI{RJRO<$nlCD?xpQIF^ zXbPNXvuo(huqVN5>pMVpm8mqqkE?7E_HdlCEDWfw$z(`bwujPX=^UbnJ#td>QpdiDy zbCE;SM$?&@BNCuIa7e7fu+hmqsw%=c)s1^mr*gxiHZjVl=$MNFKE9+dPo@}Z43P#w z!Y{?DWkQN(dfdz&mh5y$ZEwjZpPAm?(kZ#=eL(2QHcf)fK_GK@;0+14Rue-!=;K_Wj%yH6<8PYr%KhI`tLTdsmA zpi)HIG6Wz2HIByP2OW(^!W+}k{b4Sbu%B+8@9p}&U2i29d*&B4{F$K>Hhb`9@LrdB^s09y0rOj;HFg3`lyu!@o&UGR!b=3#SF1Dvx0?*IbazMU8)3=cz z6$!YS*FW=(r~T+PXoIitRHO0q<&+E>6J40dEZhP3SXdP}=UkxpyrG}rRGd@lArJ`O zeB|rPZT`e!%vw$BmWqQ@*YM{fz1M5@(-T9b#vM(JjEEpXyL0z;o9Ynppw>4rg#{

XXt` zI-${NHKB*A?E1!7t2umMCKX3W5tH%I=7hsFu4jfC4-|=P?LZ}iaFTNGfv&@T2T3DTp^!Yc<z-}-jXwM4@CD>x1|1$ZjXl}E-Hm{OI`axg5nwfI)VB%w!7IkwX3u)g zmyX+8@w2^Fv?Y;N1H&@#?K;1fa--6W<{;gRjPA=1nZ85k_S%I5RV2bpf@oJqEiRk3 zi7MumiF%99c~eXB1NwzjZJn?%7d{XuT!5ab1s}{bQj704e;DQ;th&ZPJ&NRqy0n=)s*f%q=b}KS=s`*)gF*{}mn{_Sr(i}-+YBk|gKl@%Xs~gqe z1c77w5m*kw(sq_x9|mgNSc;bO?6`3~`}+`=aTI5|r$$8v;?`8}0PHwpOHo||_}1BM z?_+GL5nU_8`7&n4xzwa^D+;$fC7w+3dYJS>(;s#KJ>?@^{VR?;0Mqf1caEN#4=t|< zhk4l)`>?{)3%FS@6Y3aDP#^(=dpQHe4O~{2*T}f*V8;3KNM-ke-f0YKrVZvgRZO-B zrp1m&FG-_L&tHj%SQT^|jq;OoB28%FNwK1|HJ(~HuW=?lKHK~Bvno_U|5vvngy9@& z+9cD6uO?2V-B++8&Lc%SFKAMKmrm^I@X+aIOjl}Fh)Y{UU~tx1$8U#2@^9p}Q-r!fSNq0jrCzLvQBRo5C8Y5ydii*PC}m>1%OSF% z@#!DzA<%J%uoD2hnK#xGQ|2h7K4?twi>f_qQ>jq8ht+Zd__#LN?GzWHt}AvFD;p z&yec^+#eecb z6DNIYkw3#_@GsV=t`DyvbuFXgraB5yoRzBLH{1Zt_}tJgivXLaFUn*lC+|n69{p!~ z(mu^mxtk9jNcGp1axaLQSg`!Spyj!85Gyo}T2w;S8B89F1IZ?kl31oO;Xy# zj^PqlP3=zel7J=OpSJ^O@~G{-*0xPbw_1Jen|wRNdxp}IBi>w-Y7-S&jBt8P7h4Wu zM5Og*{{H%K0KTap1U}?dzhSwo+86YU(d5m8+QH|LK<7Ir)EwI=oE?C}*@{AT6VW<) z_BeIW%4{f61wQDwqM1L9m=s!%`fTTTN?h=VIB@PT!4Ze^TyRd0m<3LrtlUE0{6m$? zmK15*Hch@raw3h6=C+3uFG@5@-vkE5BGPGoZdq7sayg@D1Sh6iXrJiOE~70C4|yJmrQtt6qxxs7u^8!OYQtkPr zh<_CLiWeMzYS)qmA;+&TLhQQxt)>T%yEUJsZE-!WT;i5ImOmtk#FpWc&e!P^ zL;Y)3&RgEK3VgR(Rb48Zo;zM_@_EC!(PI-dc)siW5t z4h_7RUW0&2KyEPO1mMGM$Y}R!uWL^=M!VBK`I>pGqEDKB(OEtYZC>NFf#9iu)T~X7 zcrh1JV+1LF@F5kq`FU#IG{cblYI3X%sQ~AKMg^fvap4cFk*9W2+O_EcI59*XP#WqD)Oye3y8p*k1WC)%KLj(@r8-c zb6TF?IYT`|PrtQQ7l6$qWUQ|YEPoj=>Ggd`Oyqqp-nqU3bf|Yxb6@^u4SO-3XnA@1 zjdskrNT7wLl z3cb_|2KI`uSB}?zCnnT2?e}SZREgY7qkHBR5gB=Db#Z--j!_WAg_nyGbWDvO=Q$Ty zrzePAZUA%V5***CCf&|d=#4Jam%5TDsArXvak}F?BT0Q&ebn>vueiwivvK+vRI(5R z66GcTr0g9qL_oTtofjIh*Xy+YVn(}}lRk0a^M5q$|JC%PL)40D@-BwVC5bhhzqH|^OodhKH}Q)+0mgs_9aUD~jvv#T2% z=ktYOrUgzyNe)Ob7P|v@`Lu;}(v%{$yyzNH>8GP4Wi3<50qJjHFIqdOXOo|Wbi;52 zIWRZbltuC(kzmMq;auDC(JSQdLnW+SJzfYMg2({YV<12zs6TINVoDH5Ivy;4Zz`vc z0dghf?f{-WVL{_P%K1D_mi9&hLU>u4SiDfR0~p1d+Gs3npw~&*3E^V-X0MMaI+%=R zx-142<%!URBeuG8n=$@{2-SGEE4>H06zA?BO$-r%rUy-!Z7i>Nk0PqBC{;i;?Zb%$ zcsk+J02s&AV);mPV@q}b9n<0KTavo)r0t8&=WjYyS_aGX7eib+2F`un5Q;5;yI>S- zS9F3>L^{l-Xq8aDf^+xMNc@xk11rdh1^LiXzO7uEfp+TF!+P;zEF!-AEI zP9dko*Wku0YG+kJPha(ei~4xe&ekOay5w~RSrXYR({%UG+uGO&#$Pqr+Z%V3UGgl9 zR>nA+Py?SINp{d((fS6RMkB}E$Zv3#=VXurEDR<5hXea8nblRgs3y7g)y>OK&^rL^ zM1E$&{fVtpnZ+3yE^QWPm=T(#nVX1S8=x|5_=q~6R&*2MbBdMIWs)AvXVXh(?Tj(t zd9%Zj-uAFqa~%3vJJYgPwyRL72@keIJs1%d!5JG{ugrALNfROsK8;@9GBK~v?nm9q z#h34MX+jE?cwH?G5jbj{uSGCnh8?|TI&1NTkK>{Fu9J5lpYQte=LL4ySpki&nrr=@ zq!<}e<4bR|NrK2u2b>R=2O;NrLV>&wwe!d_sgo_F;SHz!d0kzW(Mh;_SGAS;lQ63 zS0Bue`y1L~EsEmEr~7Kd9GiRB%wJX-Uq*)s?#85~6_bgKv;e|XsvtBkTmpu+52<;y z=3ECF3rS-A6p;aZiz>rJ8zyF&Y`+}r<5h27)|Uqbs`E`sM7Tl>s5)%keB38wvq{N4 zM)G`pd}ZzZ#|5|7b1!ljAxRimM=(7==Ip^}(L194#y~mwTqiQ$aAb7l+z1yTT~T5^2def5Xd8JHVjSdUtfWlW`!Ft39tn;=_Td~1H(>BNrYqh77uS}Bz!RF-m) z!DtJp>3m5>X+=9oB|(1RBRjZDWNBVr;k1Qcq77s_EB$OjuRcF<>W)!!+@RWazz*P` zXtV>v?WAL`+o={#8qXzqEb*|$>NtN2FqBZqa1|zq*DG}F1Twf^T+AP@V`A+fc+w$yHk54DIi$A%&|O!3zujzG<@ zGgz8n&$?c*vT_`Vk-<70sRHx4{aNizx!CV(*s2Fd=v_};G5fYCf3d1O2)KR+{55+UYkA^f z@K|3}XhD=iT)tn>)}QJT*{}9|AoEJ@T)VV!ta-CBtDv@f;qZ-|(jL8ea5w-_~dimdNpnlYI!W**W`|5#jElmzB>*-hT9 z1-OB|yjtu@+4qf%F>^LeZ~NN%!Jf&~%xHuH&&AngiG6_J_)_jRUiWeLjMt0#56ecp z+L#p*Co3wtaJR zv1{A<{uJ+C1g6FPgrdibh%047q6Y7th4N@`8dGtW*E!=5$>a*ZA9gZlJoV~Vbp&OX z3X6#fNb8r~I6Yd^$hMlwe0(Js9YDxOQv?VXCmvAki){*6=Zj|zB>^bvjFX+$-{a@Y>ka;`#eSesFsZJT64`hHP>hPEa(fRHg1r>zp6rJTN{VPZb3U%RCb4AE?c z!juiXC^3bp$Iq)N z%nrYHk-L=L?HJ-knm9EEi*+mWl98sRZk4n#7-Aq#Ob%>&IDPhrV@%|cX|JY}7x@T~ zi#<#zUM)=-7!+PUG-%oopJe1&#IM5$it^9M^v+fHzpKk^{e@CMr8qKIMKG zwH~0;En`-J2l7%VSWk}} zO=GO`gRM`IylSgbYY5_^^SY0!nwEXL<1zIJmzlCCqPghNDOqpL2Yy4x#xVbWJ%4HO z;_cuZPz$_`lC$q%rXvNfV@<}>X^J3$_>#ze?_0_n|C)o zoGrqyYh$xir*#S~d$t(;2)bafQTomQ;mptmsVowF^lKj#q^Zw+eD1!6wq! zlej=4s$)EM!6DAd>H7|0Vs>&=-2^qij9(zL7T{6~{k>jq8(!SX8Pw3)@-cCrI>1lJ zOU)pgW-e8I7=7qw!XXZjh+?bRXI{EUm|(lKv@(Bg_T6A(=iCrGbj#-fIy_8YS* znBK<8j<^_`gPc3+7j<04TYWTQsA+0iaZyQOZQ-;H1wPaWo9aFv!Z-4~?ZIYQP2Y^q zu2I%2tSj=P;>3j`tE|d~;_%A@)7B4U`b837X^n-Goh_pu_^a&zv^EFMc5X(7+e8Es zI7I|%T|>D-bC@v_0zbA*d(!@LAuRayLvjx+?IAsNeyMp)`!wI|LUxwNf&`t<={px7 zLtzV))-ipgS!fp@xuMm@1yv8L@2zT{cS5C$$lVe+yJ)0!$xSUB7QO?BnVhf6Wzdc; zRy+=8Y`Y24TNh-ML>SoEiK}-0Uc;jVPv2QTY0I zPzcp_HtIa~6{cHc83sVJ4?(H|b0dFVSFV|@!y~M~-WmGrWl<~E%h!j8{VQ<83 zpCA?wA})=1Hn%in$I&q~BV+_~*4BQ};HXYaufZJgWUqK^WYTRW5H-(K2aIQPzAcKM~4z*evyH;Pw(ySj1a?>fN}2QYKWQq3!y=g^qWuck1N)-_umcPvq;1 z+{{lIs%O};-Kb-Itpo}^-@Jd4x@ulI|ECJ?zoDv7>&9r=U1HgkN_bbNBRK6$TChy7 zHA%@Fv94pj9W*)O!r!5Ft%5twm4}?4Ppq*roHczU1Kb_JvRt_=_j^pIA;&&%Lf~gl z=|LS`1H=eIA4ZVbP#?*kukZ@V@zAH-oHs-QUrjzDpCQ(nrcH@#E+=5Jqn|E-YhxZf zS0AzE%G8F%pp5UfWQI$Si*2*CEn&(e3hy+YQ(wMJ8T1(TeAMxV{k-bcLU6%)Vjl(n z6q`3tFj7dEm|x-LPG1tgj(#(#q~G?uhKp2e6|4?70S9gft_4#Yt+>HOrnCpWHt)b) zx~8#0w~t@e2%@;9Z(g^j;nD(X`=|*y4$y?-8Iz6M>L=HdvNF1w7~`2ya20m510HF$ z=c#h-HIGUXo*yNS$!Y0KXywL@INN~+QVN^2g}t_IBLmk#6GygHEh9zeDNWcH0;UB@>Q zv$4JJdOvN;yGi^+Qm+q!yr!3vt)0!0$r&O0_GuhpNB)|9^C^0MigG4yFF^$v_O6g) zF9q|t5`(TgdP2;<>N$V9mXy4(_y820aY|xheA8fPz#8)XMr3bjlfsG)b7(5P-aA);w4JqN^IR5739A7mt7^OI zGqmEPD`(Z4*6XVNGCGGw!tH-9ATabHWVm++;O6?^h=W4dFEQ*-6@kh>1(n=*|Ie4Q+y8`>#4FV7&= zfNt@j^h`QY^7S3bgW#pTM!%ZE|3Prqg1k9zilXQ4Y9i{nbq%#f)sY>*##+F#?<-*T z;}4SD#zNMYB-Rz3`37!kNEzAJnc~rw*ai^XD}o;mw2! zjaUH*D0P9ZE@$1)YAp|rDNZT7(wZ7+ErEPH!iER*Y`{9ksWvye()M0F%NIY=m)WDd ztzmW3GJ6yTOK+3equS36(Yg`b#zlxcG>YAIE0;ETvfi%52~Wf7H^|&X)3gfgWQHBA z)(+r7Ys+*U*1w*8kncD0R-=%8pCKW;XKL1&Gnzbv6{%ZT8Q5k`~rDUa{d z%Ke2DLRLT%m0>Go%W%hrUis0eOK$ImFI&@!#(enNA`@4VgN>%{dVYzZsLrnqqJmqV zeR?;f-@h!}(3U@$Uh58O@@uX1;??7(^43eYGUFaLjxNR|X|xz_C8;fF>rms8$3oO{ zkB?`rv-1XaeJ zM4#?;6ZLF6Z-L&lkSTBTs+g+t9ISD=n{?M4#^1sX-+V@5m`X?nh zl_SaS(x!CkV|qh*U|+tb>BKlsQo40_VimQvrVs06ktbuAJ%J&4G6K5u9fAy}0&4e! zD&C|SN0$3AU>!P5FnB$_{k+zD@BD0d`kj{kYqw8%|3iMx>QDTf12TRN>(Bfg>%NLL zvd4@i$<6yk)PAuHKGkR0?f}r7lJQ=RjuLN()_Z&YybY<&{>CnE(*Gba#TW16!0AWF z%2<4+h9wJ~9WND)d0o=n(oBDU_Ttbod~m(wtOBrU!n~z*ZpXn<}A!JZxGPeYm zxx1MkHFLc6Q4fgR>SV+Z%`3Rw+gY3_qiPc}X9naxe#Uqe8aV#$cBtUKss82%0LPDh zv!VZ4Vv-_K0bz`kF_u)=U039><1(&gm0?%|QDbj92-wfU#`0WbuHQMn&R2cQ8uU#) z=sG0on6RBf>{WFMsvFe1}pIh~BQPK7hH{;FSSI%DYD3TQ1<`{Fm!eDSn zd-A;_e$)j=#YIsYN8;@opGMl4xh-Oa?{n6aHV(5l2Yon#s2if! z768AG{)Hm`#VkjL0yAsgU7C5fd&VQRfPq;r>_^B5hV5wPFN7rW{_MZTA_cEb~zaj2z?~W{Z6h5V(Pl&;71u$=~L_c3b;*Q zRhU4gDEPO9%O^jibrixlYdx}0Bw%clu+rB9G8+Foml-o!r+oqci5r-CljguzOwwKb zHCE`K#x~OvZ;auuRE$aLE`(hs0zmhEqy7J3(r%4UNnUIAy)}lc7?W~w5Bg_(XO*_F zfcfexpXW_(Cj9hhndd^cOe}1Eep}|8uP#y54>Q#?Y3~m6;xzo^x<}p~$9TLlyk_8zJuK7agrt_a`qZm5Jy=<%y>< zE3v#wGg8HN$w?sXa<};`iw&X9E7x042>nZHzl7wL<~E=9RmjIbrN$DwKK>>2k&W}w z|9Rl&@%ksDWOMqV@R!jves4gm8q#c`V{#YfwA4o_{y|jOZZDijV+h{7j=jIYfi}a- z#Mx>awK++HE;8hB83zI2qPOx`DgX z-ck3_f3l4J&&ko_Rz?0^HBU^h%ufn*zGw)0w@cFeTex9jXz#y% z+4mI-FGaaZ;KoRsccPlyDu1Zngjh7YKWVPaK-*NJ`w<#HsOo<@Qk80~j)_&meCa`? z5O4WB6wC#SaPv;j%XPk010D&kfIn*@c}4S@e2a%NNo&ModzFaygZp4i2IbB0Fana8 z){g*>7BW{a-rMb*rqyexJ(zLIbPSne&X9d|Ab>ce(*m~CKkfx_39*VU4~dEz{z^cB zw$XKpN>j)CN#B&$#lL*cwe$jv{p6|gSH1b&$dRyL=~jOwe+2@akN$UlMsl}v`cnBP zQV)DpF&D{kfHI8{enfd?3BTIS!P$O8#$B}B0Ac30bD?(TtNDd{W+e4D^$VJJ05?uw zHt{E4tPXpy@5ok@KD#0j_*yO*Kaex#)|l2DrXB7O|K62Z!9sn<3K#MxGn{12+dqDy zOlD0`oBsM~)Bj@c%>&s?_r7s+W=?y~Osk`cwze}mrK)ryh}|s0=`@jXB2Dd6DhQHV zLu@loM@b0BD3xe9Wtxy^j9MbrX^DNQMr;5jE@8^T>+%TB1-}-QJf;$_Ny;@ifL_Y{W`%xAe&f<0rtF41F8Kg6FGc0zLJkuGRu^)^@pBJ_^ z_t6WTfg!GR#sC^`eCMed!4b%s=40sT1(NmO{9A*z& zb?KHPPyWgA&pE|^@3w#GY^AZ-qvgbwvjw|XoPTUODEyT=?3Ygehx>hJeMWj(8d9@x zMmHPmMLeh{3JI!gPFfft#OTi|>pAsun%s;Fb#Niz2HpfUJYb3DA5CxEFMBkhQSji( zb(K3?c~rA$;TgZJ%Rws}0P92Uj^qocwG}N#{e!}pAlI!$Ia{@uT|Okx7%o_l#@R#? zY}rlkXnhv*arX;Tjrdcav=tsP6ZB~;mc>{v0F(eBqDo})hzO^{a|d5fyH<1nT(je~ zft*7^P@Rh-z&zMlLMr$Vn(wP{#m_?V!Y-8vCscG+!WP7*gEAFjFMwL_jQTEObcxf& zXKI03-Q;J=q=FXZgNlX8(DOr=2>z<<%rk;K)9}k>%z*UBaR%`q z9(!$)qB^8oGkUC|bb2V+VFPdX6p4k*3sGR05Ui0w_8-oP|5H00Ls$39Un{)plQ>iU)Am^flYjFPpN97R z25~;n>;oImMf0kJtKs{n{^B3aJ8n1mlpf1SGSM0|4^noNBUtf>zM}`_8$g-$Svp@*MjwC+ZH4hxSxgY-b2+1w2GX{dI)lYBhzK$D5iNH!gBAo{SkmljwvZD{*Q zd%Trny32R}X7Bv+>A$kdNF2}DxvLDM&B;G$r+oLupMLr5UpPWBzC-s>UdbH>YWbi$ zja@m9hM^OrDB+n6!(LIh8~``hzVp-f*U5&b{|Ywk7q0q?yZ>wN`Tv?p{15K)Le2K! z@N0z>klp&tqMx+W{vNvU56=FD&3_kG`JbWth2Hw#-Tgm9_rKd?e>?u~EZ_f9NAz!3 z{QJLO%wD&1duieUM_lWzqrmF~xC3V;E55T7OP}U}xH}J|kTVhxXRY-SL#ph#1RmZ# zI*1UwRxtUrl0SZ8tOC9=ORSIflzx&#(fFVKI+?l zp=RvwZ{}zI`+xo1zqtX?mS{bdaf*Csx_OYG<*mB0(LJKIvsK%7(zu6#wiRo(zgBTR zBko{?;X*XSya<>(M~2awVY<*AL+*G_SKX zLcCUBehF0#DB=sPcKwz{bG(y)blOAbO_%4J6h`bHy4JYf8)RG3Pj);j3d|pPdSEzo zFqKgl_4vUgu4(>EyvhdvdtlX-rgtJ=E0`B8&`bPw+{$ob;uX6SBHeF_685eCzBm?W(4X&jQO&dexs$7mucfdb+gq+kim0d{X)*FvVQGT4)(b zki>qrr1l$o`w*qdPnP=PMiMn`&1ZkymH*>G#eI2p759u#%h!r`kc7kYjnp4nd937~ zf{|vm%Ukac#Oc=^QM_S4wBW)|=K7W=Q?p}FV{OljzgBQ4WBjDK_-Mm_>khxOfn=)v zHVy!!qXjlUHX}dVt=KpB`3GMpZshPGD6Gr}?)W^fX+gNz_d{#k#Wwh;_bd-xu3Iz- zpV-9i`Tx+uv9!$+{ZDwXhqIj57^{1x@!%g?5Y(x^-lXGyhnxKWH#7`u7tX7G3S4!dgXQxMcuwB8{7{k z7|eC=USjC&d|Syun0o!LhvJ?Vjz@WV+A_)89N&bJ+=W8hEr5X}^ku~1)#KM%0d)BF zn}bFBW)e}%YF|QJ*tp}B`j-*Y2kLETb9F=+ystm(GMAu(2RK&(SP(|;s6NXwf!U;q zD{mh2FO->tFlVI+7l`F$j%G7)niE%G&9?GXS2Ju?f>134rH+C|@Ll?HF81vtf4v-> zn$MYBYUIv2TkmjtbGhK52C$|HBCCjha-g)WXKV3pMxaJfkcTPNDXZ0-z#>PH!+dg= zGc|Wbg*CD^gttd+4wdz4amU2(m7jZixi=~T;j+!JoQgxf%rlW1jlBA2nc81{l5E=^ z&0OD0z$OuY()M|H|BHX306?A2D9xRC2x^SVPPK%Czg%f< z_JVouk;h4GF&}Q`3dI63a+NA8b-mEVP`zLemKks^jJs8;o{^Mw?uUBzES!6P{&K>A@2xKtQ8{L@q$QH9ndZM{_wJnpKew{q z%!%u;mO*VxWw=d&FwFMke*bvn7dI?Ch@Y%AU9LG#iI@zEKr;R9H!!u_R1|7lQczrQ zW;1$Rl}ZL;Te^A-U8VZ#-|aanJEI8Fs1rR69C-0)namO8JS$m+y%*3itp(#iA$A8j zB;`sx*u)+`mR}b>wMUs`#$EmD^}qQ`0p2bl^uy6FdsSbb76K`Pq4b$^rh!`c5rL&l2&M1RKXJON$> zWuSW83V@(f^S|Mq3H!3>PJ^i{XP#A2XbEV$ska;+$dLzezyD3kv?9_-kZ8I3Wb{g( zCD|;u(3fW-81gvW+>DfpgGsz=qS%&)?2)R3h?R5YmiPRS-Kk?8G@aN1q^4=#@_H2w ztw$?+7t{Kr)q>07a0-z8*db7pOLv5`b}S;Xre<>G`?=W$Ij$WG=orm-Yz$1urJ$=K#4+ z3zugD>@>qLa>Uq9e(=x@8MY+75vZOb?&%e^jll~L4i???-zAeS>oHDlu8Km_SLV_bm1Px}K|jKJ-q=vcl&- zj`nXk@4up7AQjWr4Wl%As+qb2A>KQ6*^Uoh<^JKW-;k3X{z94ss4NdCe9!FH;ZWu< zV-ANMOI*A4Rhyw}lj)HD8phc7YvqGKua)HKCeY!6tgX2s1Z6S=cR|BYaOcXFR@n#h z_0Wz4BhQiE7e;&I-xt7*gF!fqRrz0^8COxYmiKJrdu^5Z&XJ93UCd9XH4KDE%`-Dn z&95&si83efP0wD&i~om=Pym-H;v^FH9N>dZ5*|FNP`K>wg?&gX?3m0z?i+&H0i9I9%oF)WB+yShbo56c~(1f9#=dZbE-#=-%cAu>+MiWH$MVpax~QcI?A#@isHjo#+lxEusd}jqsXR!Cdqoyz zS;WJU7DOSE+zBR=IhB)mCMdJ{q1A(uo-;$9EFZ&umraxlK>sbB=s10{{pFo}b{^-> zitXb9A7Lt0T?nmm%NG}d9Ltp~BwMx& zMihC1yqo6TFj4r&LVbFj{%?4Os0BUrp?5W3uHhCu*4Cj|WCtf^P9lGq!4Zo@r zQ;G6GYAgnlXao^E{z&nN@J{HUR}p9Ih3UBM2a%ROnB1ah1}{bI8%WJvkdVYazFSEz zUdkY+Z{4ZRwiwCu3`co%-6-B;XNNS3FD*z4UMqwd51kENDM~t@PH#RdE@V+z`3Z8g z3t`G)vwNqS$*fVNy7`&RLf3)W9sq2kYMhNFWzQeP`LyO*1F`OBe-vBhB(jKJD_uV43A8P&?l&=^(;EsDx00q_DcP&~D=fVh!hX=9*1cA=SP zp%!*^VdueBPfif0_DM?*3bqQidxsR33fKq_eKRR{Gw@n1?pzRVEJO(m!>vx|Td!2k zW_QMV#exHE<#PuSL^Ms8jrZs;uQD)O;^K9vESiBRT9PXfwGT|*@jr>an}KpO(h!=J zP^sJ@tB=v7nhm}GkdyjNqz0!ySQatZq1FovEC{`tUOf>ZYrA?AitCH9{9=|j#`Y>B z2TMk87}-Q4GvTx{&v`f+!qUMq0|5dGQT+Cj>{4`J1}OS^`E@4e!v&dzqa)XEJ48+_8ne0v$-Uh^2Kvqx*jt8`0kwDcS%oi4RZ zH5dqU2YT4|QQZwbCE^g_>`Ke_`(150;0WrcnNwOeQzs2lS0y)TQKsFW8o4v_vPXEP zzvxZq9|}En?>a8QY(8!J47UO4{2Y7W!ShZ)7)0{&ZWYD&+0v_EvsTmd zI6qS_9=wK1iy~1)P1CXKT-ILdR}0SypK$!W$hr{896(W@U>h7~gz$xzU7v!V7j{rN z%hTSuq7dGOihUgNct)F%)f1j;q~<)ira=9xO+Z1xd>ii^w(Ld@>BcLAz)gtE?WE{D zZSrOvb!X6Mq;OnPVKSC0#^^H$3kUC)0p;|=-Z_GU?50MCqZZ@W3ReM0HS?>T-9-1g zE~k_?zy9vekJfRM*}Nr1`Yv#bS8Cm9VLkF>rvp}Ej;FPErIR{7;%#Ih_EXJkakPSYIf|?}Kbi(chEJQ44-&mU47y_PFC@3ack_uguc2 z9B?NDc8Tckz1@@n^9fS)gi(W4Qs`A5AAA*Id$gfWjuzTS7cq-C#Jt|KGhOhPx(}Z? z{l(dB+jK#Yse2`|KK|QT(!Q(j1GKCUZ*}^O;^#f(bx`WOvxDFajG#*+E)_K9r#IB~ zCN+;;{N_$iI!@7cn?+%_^Q0Wq+V%y$`X|wUb9Mih+X6gar(+e#H*||q@jBhx2I(~a zCgmaJ>130>S0S-qRRjs6uN%v|LIpQ$k0$cOxr;n4qsC2yd+D#rJEvc&-?KnHA24!I ztizd%E&R=*Z`hU;#v%KsS1e6UzYo=P!(e!2%>lycJ6@SBgNtn4p<7)dY}gZfXsCE% zzkhbe?Bo8}v=|Vt2UxT(7TRwUX!?{RtMJzfMjPXPfK#C5>RAK3)26;KhQwV^-1hBC z5!budK|?2Uk2a&HCr6wfeD=TG7EoCA6G!*woZdH*Sb@=Qy#?XNZ2`61l}O;RUx6V! z5ER<{0ii5Z?ZndA^Y=`);L1dw!(uK1?!GB71!&|okrT%*_FnT>*1<2teMG(Mu{xyQ zmqmvOtl~~aCE&HzE}Gn)n-vKohS_;2RBSvqA7D^XLV?BfImqgh$`!jwilbIu} z6sY0GI(9h{X|s|~+R?pb(0NK-a&GVBq4M>Hb0aY*XZs#j%z)r~=}>7E(kev#SDleT z=U3mH7?2hE3_7Tc7V2@RWGsoa4ui%0Ho>8hUy*3Y-n|sE<89w9h%u#D>5K^;grDE+ zX*gm8&BKsWbOuDW^7Tw!%4Uxpyh{)sR@~MUu4_;=q8GsHW$2Gu#|rj8KW8BqqOV4S z!2Qr-hBf^jAX;8uoApDJiFg7m}+*D2CHA#J^=0vX&ZkSqD>2t)2 zk4%N|6?|0+rJas1vCmiv4L3c;WbzuoFTa}cT{>2@>ymiI>;T?M zL=m-|RI?vAJSv`ZWA&t(SB&TpOLFI(#sQ5=8=JYJ%#70W8MDp@-=2UUOBd|AcE8lM z(o$t2EL$Rxf(94qOn&^kowLTX^j`9J25HE z2i5-KfuK|~qZYx4-eTaqGpwaAwFsZ|bk^HS&G}V>)m6nqHQ5TL&3IP1-f3V+dEe)w z(C0fjYtiUW+p3h#2vTwW0iqZhz^Z)@<3IUfsP&eSTjk~AQ5uUILp4N~<=AluhHpc# z7}C|vO+Vl(om>vf%YxZE{$?>0;IUM)gOWNK53(ur$1;bDjUDCy>HqL3Mt@G&SLn~L z?}qJ6qVKlVo8~e5A1qayQY2zFdIbv6&)+s9`o9{}c&%{!58VU1F5e9XFYt!VI8w|3 z8dpN*G6Kc^0hH>w1E=i7G+6w?qKjhrgYklk7`*ow^KoIsN9&%8jF* zCMfs7Z|sgO*EivE!K9*Q=fntiq58E#TE6yJpFFZxxnEZ4rT&~>fgu~@nV^Zq38Wr?tIuj-@|;F>{Mi=;xct$NA4BczC@X(L`meDvMkIAw>G z_?4Y)Xr!rRtPo(8t{4eOYi}??sYAQM0lO#*cb9MB7uC%v%<`J z(KLyv1o(D4V{gg&YSaCv0sHTwBBgU;7%jO0m@7`49u;*3>Cy%_X@Me@X6GIGC-GN?qYSY$jNch3 zq->Ovnx!Q77-0q$XjkX%p+IXJp7SO9Ak z0BqfGXMxmDSv`(O=DNm49Zq=6k7Rwkf7f|e_2}!i)d`!5X_Z&q_eRREgz%y<8H}zj=yhVF9;P|yGVjjFM!d{4q?6yZL4S~VJ-{SOVk2_4J zaC!(f=mO1~gMc-kaKvFHW{}=E8+WTSWD!3Nduib?yOz6{=B{*8)jGpjB`74cEi8X~Si8FN79CGW-yUD}|a?aJ-_)O4*$ z!wdIP_&-hOyiGU zaqE5)wX!(GT2dX!T8&!talxVP9A;-*)Y&QVU&m2ROHN*pX0Y+4HDA zmGQdP?dYh8S|HH~k^A4KGe@D`$R3$=5c28g#}twWd5-1GAYtIy^Ii_jOdKY!;U1?X zMeLKCLS^~Z39FlLb02@#_N<)^MznTtdH_xbY+e?&iB*WviK&>TY~4NqtjNc+OY_tg zdGNf!6%>vW5(=mj!nT>X65nsowJm(O`&)Jg|Jfm35JJ}>_uL}0&bX=z#aBq6&~m-~F= zzQp=gGLaRyz|_@0%EBETqT13eiF>mHxy1bJFH3I;NyR>*_6qbCK()ErB5&E5{^qp; z7Z#Tj)h#gfIO+ZN!v;GeF`U*^WiLk%eK~r38^gP)SdDi$YdL;y%->+doD>PGRn{kJ z;G)`PAx&s|Irjk6S*`de?1RXqP{urvXPQ}6WwF_T6AaS&X7oO(LbA|i@xbZ69U1#Q zRXCvE40x0DsauETpMT$ZKmPn;&~cZCORZkyhLM8`i$_^l%9L;0sfD+C(R%gzRKiow z{$K%`D2yDFD&R{S8Jgok5UHV0MmaJ%0Ro(Ah@DK&avEkqP>lG0Il{0bqn@mc6X8ORn@t zY5(r!@@SL#1`cJ4M%i9tVSHcV6>fdLuosm_JY2qFWoC36VJW>K84aS(5em{1AUy~N zL1doE=)kw7GyP5*h}+Bv3>mej|*G`(87-!PH&=njjswoPCpGBBH7EXkY87 zD8|f(U@vI-EF)ok2*Am4k=r{WoEABXFZMkrb0N7CQ^^YJ(BAqrRqatOz|xSM%bKbX`&d7&tjncEepvs`h0Fb2>L9JI}r5ClR(MLsz`3 zvaos8M*UIao+d+3XB2oQH_Y}Y5xL{&H>QYx`C`YIR`(*{h|8s=(yQt^ht5h6Bj@^V zM`ZBnkrzh+41gk$>;sT<2c)cg;#z!1oXVQnW7@%6+Z%ewG255KQR&4YAG@ElqvxG(QZIL_iEr zh?$W@4~1cKS?sF*1|&#HNwD^bl@+38K!)Y_wsJFlN=SKx3(?ec#_w@lm?7l%g3VOa zsNh?vud}DeVo8-#KX@W$(M>VC6pd?e{8cOb#*`1K&goz{zadX4uYnfr zK=V|mv4;KXP|#HD7lUl@y-m+gAVMk;XS$r9AqgrX)>_uO?ndYC4s$_IOZ$oZ_R+e? zR+&q*_*rew2bEGi#LFu~{)m<;3a*wXL}KZM{vll7nKg0hgJR-jCd1dWi&ny}Ksm_q zFrcPoYSdPD04HH+6+QkOyQN=V?Bmu^1@+hq;5o^Zt3^j6L9w4s7DTT#y}Y-hd*eLi zRG2Rq&gF;zJG=Q1b_K@Psuk}!)rcq+jK zc0mR;t=3D9Tq9%&{T2XU_YYwph7n!PRhOA0UNO#p@Vmd8z5nSSjqv*`7Y8d9jaw<; z&+0PlU-hGIOk<0w%MUCuR54^Bot~#Vf}^K}dS1wR*ySN2w&r0Et)!4p)*MP{Vy;&P zUV9EqYwaX?dWZ?uW!j4cS#}K_W>~xTRZ-VrIY{i}0TN~U=WHkdYO^{0#dP{-*cV}e zFHK@W+3c}Vy&}3QgIJWOjdIz(&@pp64_oIt6fyqh+hJAKwO8Dax)E?xA3!I|@Nb{x z9pGE)@zijqNssF_xpdSFzABcmSjNhDKVmbo4=Dhwls^oG+x*!|F+y8?pV=!(mjijO zHnCu0#qx%#q7j|sV5DkOr+R6RW+{ zj>Yp>`a%(Q`nUiwnfG`kX{~t4(>)(_J`Yl90{7HXOAX4 zN-hhi#7qyF`rH=fQ>hFeOP^wDdI?EvsaHedPvswfwKQ_J)--h+5Q5g3FY&=`0L%Af z7AIGdUy{FcE^R`V%~;QZ5*r%89xuZpQnxWWW8+jB#=j6E*3Tv7ufk%~ZOw<)D-CsO zS_NTYbvAjGJ^RjJ2kRDlC`zi_FXgU8Ue6CBwG59r-u=>Sv-H3{hs_GC%MPNdAYCF_ zV6au8@|q>$%n+&&I@2$mkHE- zstB*<#_2md`n^$z`CutEXF8#;j{?|)p6=0Gx58Yv-l6P>3VQSp>IW!CGQ;fnf5AgNz#$2UqdL+)Ue5=Gk5rw;;iJ%5~K^?mRSMY`aOLsH#ddOuxd;; zo-|CY@9ofAKnt-R*^BS(PR2%q3b(&fy?fE zTC8Cx%3WFyJ=2E>Pq^1OaoG~S$Vf9ZxY1FVPg$N8fDW49r%66)_JA{GPQP}I278*i zv-6^a?I{5N=?;@;cQn-d{uCXOv?ggP2rJ=*M_2g(ZbJtUJMN#pf9fJZQkELI80^Ms zwP~kGDqKQL>^<^>VT7s6xx^@o!QDHYG?vfo!}Ekfa#3^&gED&U+3Q zBRmJ9(Vy|3aiY@545BZu5)M*czduqB$E9mll}c_B>oH3Wr#BytdsWuH{B10^QiRgQN5-*MyTEy$(UghpstL96CkN(0hC1^XoyR^ z5H0poYwsI8be93am9NU>DU|S>ZW}8ji=E;6Va7PJ0bIrD0vxD?{G*;DPDfbq;_QW+ zj6T*rtT*jadW4w966Fo`PEe~waayL{iZUZQ|EzM>mmYkV5VhbTbu`YOop?st50c=j z)0z5{WSiTwcToaR5tWian=c34y?!;8*c{J6QzPwEDn_k zJVATrWdY14L4_x!)5*a}F)A^LYBJ^PtQN?F=vrL_yCCahJ?rW=VVgLbFk;EF%qX0c zX^+ORs~0&W%2Y9fZyI8I6}z;1vpW2PRUfay%N4{i5hwo;tPYEV8!>XNZJrEI8J=!s z`jEKr@u?7@RgbbV2xO<+OpeadPO3~qPgJ3#D@a^wM6bZ5cVlRVRPg1w4$A(hZB^-7 zwa0!eL|58K;fWAtB|E-U(A4;WtUju%ZPe~WfBkU9p^=loM#;t$FCHZm?S9kW8unU2 zaEm`od#!MGt@VKuHFY?6Mw+NIPAJs9P()R36v;OjRM{K5g+x2sG z@%D(*K0bH2mqryGGN9($#zAEK^eClduE!Yxq@a6Axgs`^5SeTy|>EZfM#r z>RJo_=2xB()0>{tiZGm1-eym(t;MALkhq9QKQ|q(O*Z74Kd4i^?I8CV&jk=D-0h+^ zZN;7j7k)&KsXZJR6j%hzVq0n58=xf%uY4zyi4j;YaFszgfBs+KCj7Ejvx>h*%y0IMS$P6#(}+xjLPUO*#Hi>lFNyvDB=*D(xLE zcCj#xtXs0~uwR`5M|_>2(Zy$_sT1ztH*bN@t?pOqGs8-stoDgQqd?B)U%k+D+tk4w_WQy z7g&!b7*lM;aNEao8>|L2ck9_gyt(<4b#WHwXCP zux$p$M<>pGWvxF3HaU(re)y@8cT0oEMgXwPO^4fQu_WWO2YHVjES4n9)Ir}?lJ(>u^k0+5oHMecDYto$%m?cOFpFVIC`S3q3^ zCL<{{E_Kv$?!s1Ot=gqAyE2S(GG=x;E;XyF);NG1BM_5FxfA@l=4`~b)&;GiqkvyK zJt!U#Zq|o<%r_PI>x_968reggl_y3qc0r&=uL{1UYp=W6-SsRD%WkF_!Mm}mnuODyJ^sSIje$hTHs1wY`}`tMxpRss>YK$J!u`~2=-NHWv)LLV^L7; zQ#M>Kke~2G9s_707xBKH>5(b|p)HW}{@m{`7Ww^I#XR|1gUQqo{G1BLm(N;UWN=g1x;C)QrsyP@#kdMj`HvSmWW zU1s1>-IBO=V-+>rv=ec2Io1&|(C4(@=6yp9x${+q#vMNoU;MB7*uJV_K+oFKGot`p z?`ZEJ69+er_-@345icW8x^3SQtd-4rEQk%=Y1KfaWUWq|+2Ma85UDcO$}5P{ONjFH zSl9(sfwgXCr`y^*bT=7ktHAZJi249F3l5q|L3PkV(^Y4N(m;3zM^64z!1GXD>51%% zB?jgPx8)=p7aQ?AT4oVRrL*$@*%{1dqYMC5=$0Kp0eM`2PqqO!`V+Kra09oMsy8~^bM4Qa6*Lbr3NBR*EgO!>d!9p+ObSmW%}S>&5m?bsldUWw5b}> zDqd5ZdxsuW5jvp{DKE!48rNlEdORcewK~MOtjfOU;;@g{C{n3^z=OHK<;|^6_1Q&1 z_cu}MggLwH(VeRF*9x3)n{g|>NKN1S@mjAHP7~W4%p&}Vj8NVNF5TY}xcaV0T2IK) z9GaI}jVIVy4Q+f~panLR^4v`h-`cHH`)mMYQfk2C4FOb%SO}|jzNlk5f720G)R42| zFAVh$7Po=9{>z~53@y<{lMm*c-#|#G)6johzcH(vycw5jhWBhBJRM=kRff5}j6ilg zGydSyc9w1mn+2de{91cOSIP>n-kAO5-exJQd`f!IDWS6-y6Lcd65j^mMkmF!SM{we zp4{%IK=*67Yj+%}7$4mr>T01C>lQqSi?M2F`x8UupfC@l* z1!@zn1W-_%_P@9DTH(_v`lt0LG~z^rz$yp^-*1luq@}}3B$DLqB3Vub-!iJiGt~l= zLBa#TQTU>c#Q;hrG6X!vi0wiAdeKAe!ILp=^JrvuTzfeRg+?hWb^!6$LHt^w<0Y7PW3u#0XL$+xs;)kOFA%8~0z#Ub-7SEs>_yidd1M;K zg1E&yf2i&H-B9HoxN=EG>_Jv;>rz()ps}1hyNpUth&NsJwE`<1t#*kk4Ow-P+ruJO zw_nVHswM8^%!{RAsm--UkQ$lIK@K?wG#w3dq`w;wvt(Me9_j_rJbpgQS0z` zc_hF}C7uhd*&6YaY(la1#cSdRSza~}W3Z7kSjEXu$)u%i0tHfD!^!)3*MPUO&O_|g zaeg}wZALZ*0tVl|^k@kd_!CtP;QKfK%*?3xlV}e2r@)`+rhtb{H>R(@s1eUmDV}05 z7sKOf_qz*1JQ%qvv4L~ln;~O6dn4n2Thv`ff2f8bR!@JE__udJR+ZRzZFL)3@acEH z&WC?H+Uala3IheD|Jew<6aU|Kh)34_F+;?0Qm~sa(%WOTSJM<3JFq!2C+I7~##C-b zw)7s^DQ~*`Zl^A*X6oodMX}dFJUk=ld>$B=8n?KZ%i`rz=|zi0Ji`Z~D+%$zm5tg$ zc`e{BJGFO^=)3`E>-GXoPv^C+ra+CnwZ=@isRR8SI`FlE+<5*e3{VhSOt^Hz8EUow zsD|q^E(8D?qwjf8nL3kBPBnGcIjL1kg2(O)tl$wAuDdVlGIP;ZE2m8T^2CX-I(lr% z9INjAA=Rfr3_So=ILP@#R|kS zr?p;hzqW8#9Xe#93MxYD^Kdof5)MgxIsE_@*~HapDv~AYa)UYqxZa{7d@mFDJN)a9GofPQ?vb?^aJ_H^03$p;`=56fjycisK$wdNr{Me*SdNOYrgH{8^bJ6LfN|cGi=Y4T{?h&<31VJV{9CJd+s*W1c@0Bb?L8i zwqC5x2M9&2V{O)X29s%I7Hj#`g+)}C7E^NL0$+1dT!T4_fe zE;BvhF!UJ!lhM{A!mIArUUcER{OFfm2#dKonf9=x>FiJ`A6YM|it@=w<*gmp_sdrA zEO__kpbebDM2*NmMli4TBF2Ot%jO9P?a~c3MKn)kiz~AHoo58bD;GO){Ws{nTNMC6 zA41<3RMcBkta+F?w`RNn)4sHS~Rwa^eiZXSQRpJGW`!POlV}FgeJ-$xq zXj8nkSY7qb*`eY(%#0`35tHv{YQL(?_4bIwSA^j2nbgHy^J;>#4)1WxSdDQ~IS7G9 zyO_*E@FLH|^vZf8{j!gH3s){iw1i~F=D|zEkaYSU!>VF@Av!dj+H5gq_aK{Yp2LaK zXNf&)m`}rt7-spk-28dM7We$b35f<2ON+enDNbk)a}LuDR z>bFQZ;>=0`gjtSGV$g3xZ>`&T!95^Ucn7tOsp~ViVWZrW9^shEo}@;H5w=441@}=K z*+3*%%j}q8y~lME*K(X$;kZ(zz3HC!NlC5kqda;twiZ7pH1(pfsU#{jKP8_-&GI)I z6Q%oVk03skkNOTCh0u2aPW>eN}R4Xy8%@ZqSS0S!mZ!aN+c_reU4<;QF+8#nL%{zpi7VW zxyle!Ppy8wzj1;-8C!6MEyuk%DGmDU;aI(Xs(f?EYz405o$h1RXj?sjdU?mR{`{I; z18aN**0O;W>*_TrYl3XeaiXw1(Wx6#@dls1G@2LEDPg%>Q`f@Ofo^ebdJ0fp@aooD z;=6M)ha`fX-rH#bv_&pfpXL8FMAOvauxHQqx1WnL<#Tz$B@ z-w<70JelsYDSofXelJ5u$AEJoo}s@S84+DV^K;JY;GXpNA9@gedbXC$!g5m4y0ptw z8Nv4CeYYHH5_=MzT#yRgSCRL7hyA7eOoHVgV-vxplKZcSwUH3nUkF$SN|nQ3wya!}^sHM{@5Z&VF5n^?>2(#umoq*oG1)fv zz0Pa7A0&4x8+sc^&d&EvAWh_vk=H}P0Ku*FjcoD5w)7BTvj@INhGJo^jIj*;!hIXm z5jhxAZpL@F*8zep?;C?PWjZw82%6E8PVh7V0MBcV#&*qDZC$ELJt&rKr>3Ci-0ng5 z^r-fHl>2JTW%`tkmB1iD`(?n3%@c-Z6y~>XDI8xGYo1ZEgTc5TpqgaCnI4Y5NygF5 zFy_s!2B#8)Z(5KNJRIsiWIevc@MQpR1K$$tORR>$V=QsbtUMb#>zXUD7qN_B_Tkuh zWdFD%N5>QL`Sky22o=6aagDtOAk^)R@~OfATUs z3~V6QPaSBnM}$Q&u(W!*)(yOFoMA!HaJSGDixFc0E{vtU+CVV|!`bZaLxCvI!a~^gZ$WS*cqJo<2VJ&F53EvsE!zh0IQr=k}?VnV2W!y?l zTXnWHW-iLWMW7+AW=5w-M*Y-&M1gwByiWF9|4I(K?gH=Pf|iye96eF?cqLiOudKfI zJawL;I9EXws)3F1C^*D`vIvw}m{Iltf-@U&`i4Pvi1I1DB-~;amK-KCDD;_e5Tf8H zD1fw?7TF&hf1j59F#q(!vm7hii;IOUi*f5wCS4^&EXLUWHg=s|;H&l@#vmM8iC{Ea zYba=fZD7fB0L>+G-?#CEb;BQ4%GxR2q75*y)XOgt;faLy-tOLwsXMr;c+KRBTf}*J z&|onyizsz*=M;-W`VnD}Me&olD48AWTbyJp36+sRWz0-RT?5qSEVeCV%G0C8x7Qtu zhubGD*GgDAM}~X6O}wCo&A2RT7}9?0?wi?%dRi2NQ#Z>ohO?sfRFr3-8IWZwA<^pu zO5E%RZ5CCF9$ydl@|4t!4W~T;L@vMxpBUVfezW3#w`xnb5FPw> z#i>g1-4~V7U46af4(tSMD*bDqf(8c2Ftj;3$dv3(k?K1CzxKX7uE}F<8*Qtnb)g7| z%GLuF6aVl!{2otR^t`QoPv2k9`b~gzoOEz`fp2ZuO;M{%rvRQ?C|xP@qvCg9^-8y& zq-QF!ZLOOM53%V*EhbF{P*}+Fs)|v(05?7gorw++btiS?!lh(;3zI{0lX7Wj2hLA0?G+i`*{RN!PU@AA*Oyn_#e@+<4ki0wvu)e#)B5dGdWfdq<7X>HhR3n+p$f zq38+%%HD`9ttY#H>nHWrXZ!0y7#-ECI{an^9Nqhmupu9PM;*biL~%mApgCf z`kgGvJ>j}BBF#{B#i4h4V!x>%au#I2#a>oY{{awdKSOyqF899gFx10vp8NdXB*@;J z5k~~rSf-CCMBIeJaw^DR zkEY!5seC&#+$1yzWoOFQ$H-TM=W?hRX?RWdt=>L_TH@z=1KQm^3D|1qbmNTbNwZ*X z1!}sAt8D}lGqv2!Kuz=#acA}dt)GQE3b>1#P}Gd#FDw3XdNkHe3@|UB#%37s*%ODT zO8KiRg*@e}%v7%rDkR;V}WNnR~CT*mpW_&q5*c*rRds)zPtG{JBxo}QlOiX;6F zmzCxGmQI}9TkD>akZ?WT#al zbe5GqY_26ydT1qGWEq|mr%G3EFk}-pKi+vuF*(I2o~Ek!N z5&9LW)0w0^|L{X4cjGY{j3z^r1KzmJ($cbV4o~s%MQ6_KN_F4Qo5$Z@P&BMLFz-R5 z!%+@gdlS_#V$z89+KOsz_v}eVUv2XBJMJ8`5F!WgKp@Fw^L#0OFOis)bilM=yfobX zc57gPD?79ai(u=+IC?oqFLs4kuYXkhz^(FR$Nn`-zIa?AX+-#po`rAT3n9=m%gc)F zc;;p$y|u#%l0PgqRO|aQ(H$7+45J6eDMfsUnS=7~y4o>QW2!r^>_D5!hMraU0cWFr z(l`N`9nMj(w11L1h?(H%%zm&L)TvEzlIzI`DeX&C{bqiTSNlEZ!p<4wL{=-@1C#-A zjdE=6g_+rTKYc0Dnfg-VDSZ>KnBuznICs+)x8hy9qP%vTvmzVQ^7$tveW^4~QH&{l z?A#%DR;=A#t$TR%^YrnAkjZ8`+3fgO_rcp^VJ!?r~qk9sj-vpHf$Hd~!^fycVcx*b!yIbK<;Db*lVEBY0 za1$(8HJrfAB=-YoGU!}tYKER;wGBhgi^|c176&5Sgp%!4;F$0>TUl}6z1fFHDPD(D zo66)G803?%DxnWy(jineI*;OGQV}Wcd_TznNy|L5V3G@9ez1b26(bf+V%%Sxn1_w?(dU1>O zQlhoHZDxXh-5mi}CkK@#0(8vzRBGM8_{rI*A9&T}{3Z*H$x+@USCrA7OY_u*f#>|= zSAuyRC2Jte{*BlGi|dHZFM>9$eL&~iRHL)b*3EtXN%MLr?ODCSI`wj;itV`D;Ox<7F07Pma4)!?xp(0L); z)Yn+H2e7unb$P|R1)`io`~nP29|D!{&{dS;b$sHDsybxv3|D)R2>-MdYs(MZk!1&= z->@wv{07& zGW;`6N@%;jLzS~#BHSg`060G$FYY9&KGoePc7h=~xW&BZcZ19%atq7mmk#hYf>S^IwA z?`#|lgHL%mz_2h-6G9nger{~pHTLEzqx8xiiGLQ5&bF3P`uCGMZt1i0LNqzozC;+e znN+qW@}fls&e;BNrJs1qwYqyxnl)f;kQP*EBe2J9kaM>IupV1@Lv;$)5xR*MKHRpC;-NbZL(pv%^!}havjnrTG?! z9-qe_jI}Nf?OAg~6bEJ89FL==kCOXy#npAL?h%P(&ix&KTa4fQSJgJZW>S)tLhYrM zqb|B;V4I|+94(ia@jeo1eVf~UEDcsWUYL*I06;UCi!fQ3^~PviT(Wi-O+t%#9}x86 zx_!M}+U>cS%RaXN0Dy{mjm@O^H4*C}0ISct->Eg`l}1YZGSS@*u?FnvH#eiH_vhEl{iorL!+XzlG25Km_;F^2V|@Cz{53CFKN?vEiB{7x5!C&IUe1 z9lCAhkdG?a|eXxXd`3=gy_S)P=dm3qg=Eq=sKe+@Fi2nC3q zr>emxmw7A4pX8VeLyPmg$Bp;*8!mv?zQ|GlH#UYbyXwog6|~ROU4|1=DDGtlR=7-! z0o=N)4s36|X<0Pudo=)3^YCi!@CBa%tB_i65+Q)0K_?eSpelQsiEdZEZVlJ3so|qU zE|t_2`jBfTRxc)u8bX5Xvy{b0T;Ur z%&Au0kZ~A4NN85dguoUWZK70jgS@Z0M>S5$IW%w!Iuvyi&09^cOG``j_hM8g-c=(# zOOhpj{_UjK*?PXXD>KAulb{wEsHbNRSrkv@_V3x>@!@E=32d!c0MIM4Lr@jLNJ6>M ztl@bB!T#&MpK=3>D)1r(KaNPCcZCZ92l=kL;~gW@H??oqlt!KmR+;dq$v#SHvkX@E zr~7A$7df6^?<9{q;A;e|R*Z<`N;yWtGqq&uMTeL(Ps?)omg4=Q>?2IQ0g9SWWX5EFh^~b;zMcO> z7pri{Kv7e3dpRWmn7AJrKs&%NFs~xgKXX4o+_mePfo<9IPLdqG%;yp?Jjej_k8gC` z8vhC@HRVj(WM5jcosaA~Qk3q`M$?0JJEU}(8?6;u&lV*=5EYLM_*`^n&|xm=Xe$s( zPnu&HcJr^tA0UmOMPixhq^z3K_WU7!5Pw|0DWiRaLS6*U7qdM>ljHOHwCw^*U19Vy zR0mcHjsz?B2h3r0fzxEL*i7m0qt48;0n5#L5hpLq`cf~<96rQ1?t~$zDnTmUuX;dZ zbC2s}Yku3bA7B4o#jaGo)j>mAG0brRUx>M!uz(>dV+FD?BvM&Qho1_=F%iB8^K}hO4;er- zb+!*-9jqa=d>G6uP!^byYH#(~ZF|&b_W2^(5Vp3YEy(a_tp=>arOn(=!FQ9K4ffcz zt~);tyM=H%?CcDmz^7{xB4ljrL1^|%iT8?H=S>ktvH5-vfjih5CK?4s#AQb5=~aNS zIM+{yusKkse%p!yKsFBxwr|tv<2j0-k7sN1>rpJ!cnG`z5^Hv(JivH=1K`;&R+w@?eE`f!oj@Cl7VQo zV}agxSiRCIV!!yWj5bO6!w$* z8Zo2mh-dj-Bol0Bn|^fY0x$zmh+;l);IY&;kHwhPq2#qmfoVnRy8{=mS6{bEipkR( z$!S|cCZjCE;ftJ$%c*fw8iOp`4&xOUoRM8i7K#mAvRDO0uM$OB3Xx}TRQC(jUbxlk zPpMb4Qe*k(%{9JmZ+0bZJ%z{XP&_?3(oo}TS85uOCmG}b<Kgayj&}-gOqA~SY@3|0hJ$1#q zwfha9i~f!5pbdoHR!;>Zwm|*Nv_E}|u>TVMj9f@Zaz;u*YqP*&rzxl`aH_vl z*|6cwbp7NL6AKxyIRgd139h`ub&Q}p=b71a;EI*u;nz@i+^3Trpwc9F zuRD8)Hb91iz@#A#z41xR#X+Naw9cSlA>0Jj*%pHLK{ALGA7awP&*LQ|q$SY1N+Ie_ z;KvSLSt9Vt=z^Ibrwh1c-6-fZSF7j@o6>mn?%&r_U$7)IW@?n&X|S7^kRs3ZOhyH9 zK8_KFCd-rgzu)5`oldyjsIafMew(8FAY#|m(wyYuqitas8pHedu5}fb@KH-Qu+U{# z$O1OM6rPf={7pDX+J>$-Hnso}MN^_@Gii}*y#eP307{jlLQO6=EXKC4+XCtzcB7LL z&0v&|XKujkfh+JOpYDCX1xEVctG0jN06%|wn|s+`-r`*bxQM=?|NM*Lqyo4FgfgAh zViCjJf4v7}?&C{FXN^wT_d*q+14)~6K*OD27|G7qZ1?6;XUq?GS7X$ z`{{CgIa%Er@a>8DX``3B$v1;Jn2GW-iKw|x0?D?1ikH zVf^^xvNSEX9BNy!n;Z?GLwi*KpLK%n zn$qn=w!kYOeE&v%y=h8MvW!?sUH2(BjFS>jJmjB7b>L?E&_)Hogt!rc$|JG^ou&2fEkCl|#e#Vg(;Bx&$UZOt5M2ItPXem?Mo)GBrjC6`{m5#Pl2tGy(Wj^4mNPw@RAw0rSRQfAq-Qjh zcxk6!{DZi_AG*Qt256NZOL6->S@XjV9b6aVFQ|;I zem)O@d3Ed;kpKh}MwGJB!aC$z?6zxnMa1;x3}4U(lSao7lvi-d>MUs?ajMFoe{A&1 ztE=m`{rx?dMDlEMu0xHf?cK}5)S!$GRChWW4iJHu%chDk{r9G zsMz-t{F#;xmM93|XWJixu_eB(tly5`?bfJ(u-RX6>D4)$b_fhTr0ZyVWT$HTicWLu z@eS;YZq`i(mnT9pP=7mx6Xl4J%OiP9pAMO$Ug;|*_RO8&}!Y~#C* zEFHy!897pY+O7fT^ob$&`hqemx~%0ow)*q4!_-=ZJ8pDk+d8tv7bL+@b4ZPz;&U3C zNuTyl5`%HpUIX=c%UL%Pbxw}-zi2XEnVAf~0RwQpm-sl}8pTQK#YMTDfi_Cs+}s&M zSmQCpC8igO)+Ih7qE6GsMB}cP3)EdKcF!GGOLp?*{k<;z(3=C`gc&C|WKVCVRh33l zT4#}=jzD9@mS|el~;LiPRg@$&A)IdR4`rXNKWw~Wo!fHv@9fo}ULkHE@-|=-d zo3fsp`P4DZtEmS2%nN5?uASr1{a0=7MSAo(>4*f;-pma-a>EXX%^gXy*H;(vua{?{SO{8)7|fNHjXbl-vLDiW zV(X3#9yNJ^dp;ONoh9`hE-)#Z-^*J8Pk-M*c3a(Bs#F=PI%#pE<$bMie#;M`S@phO z->eXg{D^&=`L-vI7UqqW{nsgBUj#HWqTVUmgqnU_JOVer%GgFWZ=zZ@S8GT-_=0Qun0Vt2YpdYrtzxb=HLTVhRK;8zurw@UqT zOYCPI?{xh5N2~e&TxH&i+*T(@YBx|)%V{ePftOg-Gm{?=SKC)vbJmPO^<)suOVB)DXKCYTVkP5% zj>{%^ru!#m6BDyl+3%a%0tS@@bCvkwp!7!h zTFM~hXx0oU3d=(i=!{%Sx~Gp1K3h2zyKy!j6Q{SJK?!}zhJ}bbWW6u&w%C~9{g=bJQk&|danY7_9Gsk5yHz>`SYipIG*BvFUpvEb z@;`Kq4YvW766>~$os_J3z#`g0yhf;ep*%X;fd$v+3SsXxP& zHK%UkTAc3N%p#_O@5Yel`1f{o{(z`h!l0vG3j>huh-{Agajt zAU@G3=n^le9M#Q~sRkUl)M5g1Mh_iMQshpI5t#)&g}&rQ+J=LHCAe|2!V>WN{nqZi zwH@4;!#T@GY@L6G`uGD?_>+<<;bQU%rhS*qehF;1|6UwS)?627=ATaT#YWzXOm(h=lJf8V&ez5PmKOp!|O&Z>_N#Q)sdNKb?0GPJeKTlgsYGH&HGuZY_Jvbog-zKrtdDj%RJ%>RxTb& z+Nv`hyn=`%O3`~kUtX3}?>#R~?Ty8#f^oL@o`U%XyFq}I3k!1l#Y|3JY9 zwpN6CPmzUd5J%c$_NjrwR)wjhauf1a>o=2M+&=mT#Qv#CcanQW0qX}hC2f8VNTj?m zwX44F0q;#*`2z)Sy=(6qTND0w$P-)jwZE+M+%RE9OZoBVXa9iMKQ-w;MSqakdeaR@ zw`Ti~+Fn;Tb8Dsh`t287e`-B{E$o*S{a=1*-%%-chd`0+#P2hoRv0Wf!Ab6`>JN1GMDbIH;gtzk2yM~ubcD)u zM~}0+cf{!HL~41(?zPYCFS;LEqiZ%6L`iqbeN!o_pVREM|?Nvm-NL6PIo*TJ;r_Kd7i*;=a!Q_8%TkL%|Cl zKwtl+*VzsJKdaJt5-)7-8!R~M>;STzW!lU|FUY!(GUtP{ReWnc@cDKB{s&^V^tyj_ z4eyH?N=}BCwB#2&?WTK^0AO_9C`&Okw+la>tYA~ctH5eX-LjQ3y?q%yvxI3n+u5Z9 z`6jjs@APFdq(b4eKdXd42$wQK+lM0QjF{N)(w&yS(>eyLCGpe%VyYMN#7!{(y(0}X z7sQKsugKDnVVZgx{2u#QJuxgs^)w4&$mm#rAA`$t^~^fsMzg*Ild333hipN9U0HX! zXax$3E;-A3+8Lm8SBCHZPLXeU^zWjNysNUD)+2p2#%_h?biK!FMyFhT$0m8sk*U;) zcf2xsPIFYy{&pc{OhiDR5~nLXl>l@8?bD&G-^mmFMzO8yd{2M*%Mtp?@ z_86yeaWjW!=fY6o7&HRl1u$ZuF|w+61WPck?7=x@#P z@iOjPQAcSStW|x-G3!0BYD7ZCRE%LI#)->}$^T{O)-^X4Q^!_}nJYc90AW+WaP3?Z zMa>uUl~i;?q#i)K!Wpf*BlneLC+3@&O{0wi^Gs7vt-xN!+r5^@cIeb{XrVvo8m{e{ z?0xURFK=TzMzY6NXU>d6&O7yb{_sHo2TASvY*u&oL0JyC?gRrg&OxVG$=l# zjY5r(-F7kCMWj^dwd)yGWoeXkI|I`-B2Hbzq_Qj*=CR@UMZ@qf`gQ^6KKC5#dIE#^ z^*-h%t`tp6&I6tIBbK}d`J;deYun3GRx3EE-$Q%%H{w6bL4K(-k?_QQH4>qo!_^G>m9%B?YPmZ}^Cr!0&%F(!F?bb64b+j@aM=0tkM`+YW zc#lPH|Iv6v^AP)-U{9j5l1~s;{yLav?{SnLS}EjUjU55pt;vW<)Fx`i0~w#kkj=| zZ4674XWL}ShJ#*F^IUga{Ib#4Eg#S0)8bB~>`P<;u$uPpB_u<2ndx>iZyLUL=3^x3 zrUsi40icpD`4C}bqumV05er6HY8+8Hp zz9wsllM01?`vK@DUhxP16vH@zR<$LrGFN6@vt~7B{{ldRa;q zFK!2- z-$Ot#}T4`n1V2F#!LP(XI=DYKpgr{bn}GhC?u@p-*EJ7zGkf`p@7V=e3nt*0zQf7}+#D zNk8W4GLd?*rf0Zdw7-;cq>JH`OU+MtQsI$N9ez+T4u6vSfccZ8~8PqepV-$g>XR&-V)9E4$lEqNfE znmK^8_l^FVi|_8S(wlw+m0NhVd{!|Spc@$=kgwqtK(3@b|-0*x+_zK-RqRGrO8%`>40r*PfR1K>U+3nUa zY10N60GP)Ii=}t~zsICm^G(TPaw_7#_%Er_D$0?`-}E3irFau#x6~{K;~JNupu1*5pZOK}J*UL+voQKdV(#R zMj5^t97_!Q6*dJC8O8y(&+oOM66Plk&0T^u(HJO&O`o=4;5uFCFH{w=GML23yVDG| zXN9752C>bZNBh zba9=L&O!PZMBsXCU3mHth!lsGx*95~U)wE?G;0H}!XS3W&kH}!Q5#MTVwK#3%fNzY zYD5yTHzzvl`8qpvp=(Klg&)Fc+as`iJ-z9MydZeB!2HV`->$Z~(OSloCCm~Afi}lc zj70I;Cf{}yzwdF;U218nYk(SPzR|fNyDEJbb@nj(dYDZw%R+_o*;f1>dB=Fn zR(jyHHJK9{Z54ghny=ytsEAQ(4`(&!m7Z3pihHuId;GvHK6MjN5tXAS)(IOsAL#sL zZOL~KKC1s8;r~|6VlEhZ=NiU6o6q)Xf@=au)5Ppb5=o$%%VqwhzkBzsO^f~`HA&b| z?H-OJrfANeEF#WSW6V#bp$5kZIfPPAegnUHq<_*^4fIe~Q5JAUFo|R>edlHdhBqwU zg*Zq{<5bktSqhzAEf(K194(6NVzY*b2{8Ma?1EU#lN~mPGshJ^TfUW?b=$wDg5qDH zlQE8}2q^#NF1NW59bRbJ2oS0j%{R|*rOf;owq=zKrk^!2(#Ix@K>$&;v|?rw5kSef zlF!QxY9Pm$Bw@#K$I(35=5@hJSM*a-*V7NawR4_uY4egs{1{ZkUKEzm0@6M46#sO8 zaz#dYR6_ggu`aexIohQR47Unto^b>Sm!yTkXxG5P@jeB&^fAhDtzjsne5F$0>0f}y zi9;~cW~Fio`fSydo_*v12TF}#l(m0l#&Ir}GU-_7h*ME9mk7D8wKcGSeb>)}&`)s3 z_VvKp8dQf2^Y#h12G-V~0`^^&%&mb1Z1#R0u{p>;DBR0Om?QU&y2`{PnopzCBDhj| zN9)T@^~pPen~Ra2pc?{)Z$H6B>*Tq%@XvGF6L-n0N?Wr)-Xi$qT=+cBpQ#8yNo=gy zxQ}I^%k-EqhP{4zKqAGz4F1?CfVlB}f!763=SNQp;}h+V*Cd2=G41ih#M|H3Uioh~ z%x@%+>_>4O#rjaaUSiC7)3rSX#oXER6NZ%?HqT;zkTkCfm<)*|g8mkLVf3Ar`+_xu zvfAFCqVW=QKc&3-Q?$~R{|NZ=+Ten0wV{^lkm}bufQ1{{je0ztP5|iDRoZ8y&7LP= zUBi7V%icV-DqU=7y|dF&J*?L)Nx9Fou{>b7x6J-RA+KmoG#a1$F$VtV#*4l0v<8Ja z)uIc&w6?Z}K|_-w8-q~*E0A4?j z6#Qa5Em@(w%RX1-9%=;1Y-Z)w*%X|o=d_A-I6sOKE1nU3He z+b-YjR&a+c5Q@tuT{)c?E5fWH!E>-Xu_V2m;=h_DcT>^!i@qiu%lgJ=yqRHscYQXU zX9S=afEt&4b0~SD3jvYRKg{g4p#@JfpLJyz<@5Dny4}6#_+{LVg2d&lUG3l|RXa8Y z1Z^lr{&{(iavugMu$R9>VM%GqIzl z<@R|&D(;n$*lyi4M(9E?HQU#3Ol+`zp~eIqd)vFIp{Z*F8!Lpn0K*n-iGU zzeMdc5i8F$r=~{7F90-2Rt<%^T-fM1QH*i#eQ)peYW$}99zP~lp-gymv1GCiQ9rDX z^y<(0>ag)MpQ}zOPd4wdZH!dU(6r|lYD$y+l}iAQ<9#`GwJJv%T4;2S8>Gzx z!(kwply2pGBTntJ=29JHWhXu(FlHa}KqkG+u~~~ChDxDTvo&5}IrG8xX$Afv=~%LM zd0uv+?OqxsG%jJjv2oqM*K4oT(gV(kviZ!L#zuW^mlEKU{(NW~qhaf|+1}@CQTcGmwmB(11U!$L z(N7-9jy&5^UsITo7%Z;=xQMzXp+cviYy+F5eFn46Pq00NfgO`Fb&E%z7Wgj@`z~J9 z`)uISUX}Ja{fXU|2%~kvC|FUbNw$emZ`43|FFJ{s*fyc4X~UZbpQ_;nY7IE|h7(jN zdE&+va7&W&qqac!^KY0d@4b}B$lLkMiFIe}mQIS7#o6i_mJmYz#hF}dMFFX>!_ef&IpI$p~IhmchQqyv04+qt4B%UIV=;Pg& zBTwca4@xCpqxB8C6G;i71yC43lFHrpDwQOpN0W?Qg1H3|SA&SMe@dBn`T(eHwU zR+UWAONm70x&|g3+KLg~l1DU#jlg3=ZxQn1#?n>PG`gP2Vg}>S_(dAry*$KfpRe$L z2pJ>L2M|jRPF8MyjXQF% zJ*+N1BvXki=3a-%@;lL8nOK=7R}4=v@)iF4EcQtQCG?BWrSpyNUrPBTOY% zs%X2D@u$2?Gfqy|a$V`$>7eS17Xg?^0L_5c9iK!boe%ob_u7MHjE=g-l#Gv6WvE#f z)Ut=cnW#qb9PM#sO#5Igz*4$u^dZll5$5R5h!X%T>X4AS2(lt5tUMizwmks{hy}dq z`xYi?BUW+%a8q4^Usu@dRpsyPVWDXNwAV}^%jTCJ@jceARIf# zv|>4p5&W{_1OWMJwu;H^(d_|B=>bC)#|dMEJh}~2T3WvPrG)L-)Yo^mjpdgnm*9gV z-(Ug8!gTD34jO=(9jIQ|Qlr!!ec&_XdV-J3h#Pld7jA4k!C9)2{!G?-#$s=CyNau9 z?s_5pGJ|y+W0FL=?h^-O^vuL6Ymf&P%VSkaPzbJpaT%Jh_>79i>RNPS{S#LYCnS6s zd)3HSdS9(+51kxb=t>Bm>m`>DF}14fJpSxTH%E$R|2px`f71Lfx6jIf(iu=qf`i4El9v?tosd|_19=AeIg72BS%!UNVNqK%xPPmAW zlf$m$b)SSFlT>G8CPlFI+32TIH=Xj^nI zR$40Ety|0Ncp7{EPfU{iO5PjV`=1v4M=y=HTX(2+8(8PLM|HcF$pw@d`6P6x`Hg_Z z3%VtnUkGI%DLNGW`bYig*UG;x;!lWq_YLcU|LfKne?onJEkf!IE1i7R@`Qem5W77a zpy52U*@OAKZQNhy*oyfRu9CN8{qq7gSh?!T(OdGXxTdp3zp**`os!?*GIzME^7`7G z6w)cE*lBR(cQXEOKKlD%Dz#-y^nbw^=ATmSz5P1zBZV{Kod}wmR!w*a1o4zccaW)j zQZ%K0g84Z+e{`M~AF72skd{|p&A?|*nmL#QI&i<(Fton=eN!bfo`2TafI|1{c@A8F z>P#9SKnsQ-px`C-(3X-Z`K2YhxpXt_c(irK);IMnUD?`571D*3{Ml#+KqgVvw-zLe-H8LMBtMEK#u zf6B`FKN<%+udQE-q#2X;Yq{sFF^>>(77N*)t!ARfb9l2oSN6o*bFpEcGsoEcu#j+S ziN3RGblyG9+X!Q-;WtP*RzPG7~D5F`1{3u`-6t ziVz_oM1E^u_xrrh`}+sp>vP|q>x#bnyZ3n>=W(oKt##}G4RyuM3>*vuL2Oo5I;}|% z6vOzx58Vd*q)W(s1^=RUlvmcK!#^H$ruXsZ9ZqL-oV4uBom`9^%m@oxI~y|*M-vA# zGh0VXJEs|{3R!~KO(>r}sqGp!)$gLi*7f)Btoww4#)}>((?Si$7lLv;E6OK6J$;)m6)vw|Au- zv>20lBVE!Qcg*6GfD(((ZaSac%r}nW#^O1SnPg_g7d$ z{b{2=;1k1+X331(#-{F=#h@BiN~@T8vWgl(vwd~%5Nqb)4E zb_HeV7kq6?Q?++;swsA!9AQ+h=WlCk%f9(jPv+JfbvXaIPCZ>4=DN(?;}^@X)6eu3 zu})7hbU$rik7$N$ljdNiHV7s`w)Gw=%wA3V{3Bu(-lXGhTAJC(Y3X=x4zarm|<=A&WDDMk+HKe-@8lhKCendWw6}8 zC$Hvc89BW*(@#%!X1v|zo8)QnDem3F?V>IC%#)ay@;80hh}qfUQ%fr=RXsf`zLVrL zgoTAUILD2py*?aZaw$aL)%7T!dfffa4E>aIiLws_pz2ujAiEn@8;8 zl*Y!!++`wf_bCSL=HuItc>CY2%*L7ilI=l3K}#dy=kmxe|NCc#mdLyIS?JQJUcUA6 z`30_H4%E+{J)8agyZwLr;Gr$FHQ#P9=t`N}yN@3?FD@?H+uP&lZf(snl=HiHuaWEN z6}F{!cN|<)Eb5w?9x~kZX-+uau7gm!DRu1Fjh;L!o(3$}fh(m?KEJy3JS~m4V&%vF zz&R@`t2i-ZN{Vc^g&)G_pHhGP`0>k&^ZNo%@?rO;1}o%#{``4sZbUiICeOA%CPg7| zud;1#ejt&%8h_knM*~a3h&M%wjc12(L6g?S*sNSIdV=1ux#42 zsY9T|epvouy5<=U8K>Xh&n`}V3E#T^VrojtzP}5Tb-1(iRYc&#&`{-Q)8lZS#N+O@ z+eGxTJ(lNm2ga&is>e%FSJH0THKOyWxjC3%-?i(2$ioK@uJ-2J=;m3TPmuMLYPuew z!n^&z<$4auYvku%U&`9`>S9JCZo)YM{vg38}5owIgtVf^5tyfo4N97p4|?we<| zbJhM^-Z+dlzCNF_LI3Tw_ubt(D}VpC>sT6iDL57T8-BQ;ZF|o1j z@893m&$l+#&|s3jIi*BQeR;#LJooFYFH+ z!EcL98(3srXT2|8yvQlznq8a!;p4}Ni3#PfO>}facQ;t#^AuUN z^DX}Deav&~*Vi+YL+9kyc*<_pKH4FypD#Q!P}a2f%!6zshqhwRzl+KZL)h=Bfih|A z<1v@%%ZKd-;;1%k8j3sS_#`5t2KndvH93aj%{vb>5fy)@OE{Zs2Fv4#qehj4)t4YH z>80`3eF)5!h6d$tHEL;^IX1odc?AVyKYI((Ml1fUT#xdL@6A2t`5novz8ys#HSg9pEH-(EdAw-BtQqVhm{puIg@R#vuc-Jg-G5j*+@MJ+Ek_v`Pm zX5}!&;9X{4a?QS=HVZp5?mYYm`!j{-$-FA6<~Bcml8|v2Q3@LEs2l68)03B{%*e<% zcD05sa8xx)cn^`O`$oa!77~b+iAnYR{JhL#1n7FpjLJZGm7t}c{6-x(9x4M!n9@&sS4Y+O3>vP;#+2uh4E#Hqa*DvQ=K{+wDZ;LMGz&^62)!QE8Xy z)Y#aa*u69}3JQutM~+xrzI-{qmqWso4v(DHsg|Mlwh+~YW5ndg;uy8P|i zw>NCqU@qP2S5hMVb82d7q#^wBdqbTU+CnH9t(~2Ro5bhyCCnOIYHE0z#`3PdXP`9F z(Rq?5EGQVDuCD%CGmRlqB`r@zNa#UrZ7oMeYhRS-{P_9I|5EM1vq=+|!E(={f$h2W zoF&LE`v@e-u?goykGTMaKU!C4XlW}BHuM)eKO|Diy=>~!%ctg17El;D1|RzH81fn~ z&`ytyJ^s0J(sx5^clQ%uiO8t;*n_GnAEfVQ&GO4d4!Q?QJpcYIz*CPQs+Gb50s`{h zz8wwOb4sav+TFG*lMA7v!q3kiSRNG-!KSCDH&@4f`@`pdIH8XSc4p>e=B)5=)^qVv zk!hFlR|kqjocB-QNF(I0B8L{;`fW}*gb2PhTtySe-CK};PS*TWT=c8%jp1)Bnpue6 z0=q<$V+-!%lasM#24og3xoHz<_9HX$%NvX9!ZRJ|tQ4~agI-OJy3R#^Jip&s%Pc+H zRhOxm{$ZhgNCr|KP*3Z78H?@CLGVVOPYh|=waB!&7Bhv4&s9{3d zy3$XS?z}f|!Vj3Fe~g!Yj3SRZ@fCrT=CyZW`yZsP$BhGpH}4VGu- zzvZb|ol~VWQc_Ziaz@cfl}{c*0hElol%W^t<>mD#D9GG*!{$_9qt4g59JFWL+@vPE zvd$s=13NPwKi-ZqSBNZr*s{gDIZ=+xLiFA!(L-H^w?9^_|BK}zlLq2O;^4vXtSe<- zpNN~dj(v)^{=+LN8QIy{$$8X%H*#8IZQxEa=V6Z?uWVjNDJw26cKH4wnz|C`K4{nR z7+kbIx2&Z_gL24+X5;w8L_=QQp$V4pSP`K#O+jAYBSpo=6qroHj4nTw6Qr$e3{lMb6d!rk3=-wC2;LCoi8t_a)ii-p-@FAM3A9%%Ae7? zJ3G1di<6U6p3~yQw{QCv90NHd9}wfCqwj(AEUnvd-^bnNN#IZf?Bp`tj9aDmzVPZ| z8lF|up!jqca$xG4HwST|n$c?=l#z*JfBw zB@!hGar15T4`1t0T6sqTC^~OE>USKLFF^mbH8t6W6<#PZSIMAh(k~K;jcu068jLKM z_}0zq=(4&k%H#-cjj+6SE#`UG`}gma>qhTT(dJ2E^)~%)^+dz$V-MS;K08iG9X)E9 zr(;;=_FgkhrwsuP+yAuIzDpe9+<(6X8BTo}9DVonrzR%O@ftqKjp<7VUj)P!a_g zCp7zq<@*^G6^5OX*G@Y+I!+Y6$n-RH@K~nDYFSuW zCuU~O>Fet=avs&#cdWO!S5=PvmPl;7MM4(}>AW*pNb9Q{r_ju(>`VDAv1EgOqd7|A%He0e{6XS>N$~wJ=ZTke?`fPmQJlUCJ{Uw)!HeokA<&CNDL2gV}Y-!Dp z-~JcJs~W{aOgxA`OdGRp{!YfSnZ3~+wJH=nnrlk#*4D!P{rzv^8P7A#9mMAb0Jf~G ztv~3!y;kN@si~l_LBGKEEU`M*B${?HHh)9RwtIInO#iWS>I{Y1o160?52UK!I<D{uW2u|=*9zXue#~J+x~ZnF?l*ep-Nelw9m**S&&XVDY_vaG zZUgPMLY`IR4Q6krXD0WNFs!a$-yawy{G$CWJx%b@n{oqTysDPQ#_w>j4<0%cf$mFN zD6-ULW*6DGAm-Z#1`-^{K7Drm?-Bpc{UwFXBDbI0xN+meM=!^JR;SvZp4liREq$G{ z#>a@RCg<<3>A{NT8{cYk%s<9B+1n?*eJiONDfGTs_U|J+O7mhAm(AuwB5G9n%FDF0 zLP{(&HTbcytu3Rfs%oj*0)tQ_1Cn{9v@qBg-y9@EBxKg)8Q@Y$1T>s`(Q=_PQL^1(V_p zZYM-eAW{XHk^ojcGEU9O%zOt8NrZ_0Hk+QjcP+`Mew$Hl_#glCuL4J51>7PAs zM;S+b1tV2DvJAOV+3_`1s6)R#9vQ6X>XhCwogRd1CrP6E01O@{2v$C|O5|tLpz&(< zojX$i9PDr2tj#rR67yVfDmv8|I?hT`Of{7k|1Zh(IOYG%Le-3qyW9^9e2?&9=Hd!` z@j~GAnKOG19AHFSbpPQ)D&onLCzYL@+iu>xiHj?wsYGfNIhYlelvMZj?ldF<4nNs_wL`Pd!hYu%RmD9Zx0WTmckn*c~C%h#`8XVDRy zR#4b0B*fq{-FMR5{8?>&Uw?lqa?AX5|4wu+U0u`kxc0J6vRW0k8DOyn0Px1Y)mv6Y zxQiIc>-V0Wjjd{K-XeLu6NTkQLc#iv&->9MQq~1?*9}+u-&mZ|wTcf2pf7fs@IjEh zYid&6|92l4I`(JskNy5k_dgUjsU1R$5X4=13e;6Hdbp%-`o+h`cTSd~sYavo2w7^c zgoNhH0)vv9WY*O{A<5_x#AQZq-{qs1bDbsRR%fY@>k#I-cXtCu@xOkotgNjmid*Jq2D!1xFD@5J zkgce7Z~ocEcjtj6>adXF7N0n~ySsNwNU)$I(J6J!d3}Ri*%d7#{iR)iR69PX&7Cs|Ai|+7s%|SvQ4D^H)Y3LogoUWCt>shYUPcumSNoVe z8}-SSV#;toV87N}Gu6H#M_P0TM_p%kzr2_sO?X|6J3^XWBcd>a*Tw&_G zJUmG_wB5j~h-)#|StCw4FV4>|FEnZ11W==+r+5=r^S~y)LpP(Ui)~hm zJIV}D(c$t0Tc>wvci1elZVvibq7uBWMuDwC^uD$r#IsSQHwEF1@ZTpRa~T&kK~5X* zdHZU9{g0;?5>qwe+5TJYW&?jdWFV~#iGEoICHKy!C{PghHtq2F6ffPx8G2LXav>7{ zp`wF>1SKV9NJ7E^7bU%|+}y$I|Nd^-%yFoG;W{{p^Uu|}z>#SBha#ZH6W;L;+f}S> zOHWUqou9A4fAYB;)w8g&3Xof0WyMC`zkk0Ht31l6{Oan}t47w=n-mr6WXdvKe|>eG z8wm({%7Pu);;UW-JopZAova}+3!1dLs!D!3#Hp&fnhKjtMW`jpa&6(3?NBXKNn-({ z2(}vk1J-+6>lUek?u^!|Og{Mp0G&cKl3?J%4_X~dU-{&go_xgLh*7rkQAx?ICUrqH z#Qa1%ZFzaQgkq{bE`91Q!`6_92tRJGrIVu096NVbH#eVKS&t1irS=9vw)?;Vb(1fM zwL|}IugqIb3?hTdk2Xe1c5WBF!ijqU3UAi3MpY32E0J&onI>eA-J0b}fh`vh5Z(3b z*FPj2*Ppg``czd#>G=Hv1z|lx1(HEUv`Lh=U-|(b2K&+Zh)Xbq_UhES+1I3H4s0p69i;P};vi0K085 z+s>mg)F^XvHZ?c@it_$hHQtVI_|>JXy^@j_Rw|_E!H9ipKPN{s>(&-{q)e2a>coi? z1SJ&}MX9al^JmZS*S6w&ckI}qboT7~r)M6f&Y^2kz%y_DclZ!lbJeO!ZvK?l)@D;X zdzQSZqUzS2cjfQQl>cR{oLo-(?MDCS6iK>Uwmv1i0mm+vx-wTzc8&+I@@rk35#t5!xfH8y@=^mbzk5 z841_pue6O#u3Zy4Yn_80yR0MHpkg-pl>ed5Bi7wasH4QcnJ_2Y17|9V0#zR$c-Pn{ zROf)*W^TT`jXJqftdNJ3o&Em&ywg!>=@bB22mgH!0h*~?`#H)S$AUghHXWdU_1E{| z*8LkqMMZUVb%(>x$x;xU(l<8=MGBoGrKMysi9(*&wlpq3I_UZM_#_nf1tXs%gFN0X zSjJtfjUC6usfed3DZhr^QN_vK-bJ*eDzi>_893*9Ezj{HA3XrD1{r%Wl&s)cJG5E& z0?^?RPtDQ>)&WZ<)5`hI#we|$mKV*to>_P?e#C^*8(f`gjCLxJ>0NW`64b9N?Ak2l zZVN(JO-yiF8CFL)XHs?vJ5P0smv#IxS6%$bFI5)p>gnNOWMvg?vI8MAypE4tG#o(A zb4a$+O}EH(TU`>L9w>YDdu2e4EJz!O!oot!zE{_6Z4U&7U3^UOAG~ti?yFMuL$S;3 zPxhaxXZSFRD8;Osm$`wXi;MrmhYxFWr@|(CJu4Ix6gUcwk`->fE-5Tq>Pul!(Zt&; zkt%nyD*kaWGBQ4qydG6sOtW!Y<-ou$WW@ICY7BQN(MM1c8M179`0W-qQhnhcE_i&) z-M#wVyOWQNaWQsb^6UBM$EE2Z7qUY6@XyH+#}e@v{4;oCz8RU{S0z%&Ec&1>cgL1f zEsCn_1mcG}tPM@sT5d$TVMV#Zjs<~hSb{zKeT(Z9kDoPZ2;*JQv(wY#0D)mY+PL+Q zRU0*O-^sclu3u|^2EWw=u)40yrwea+a;ahq@`_uQK8nhcD??a>^!>iv++2AyJwe=Z znZNEI_k5|5OlfUn1Ks8h2uG8l$~#}8HZm|&tuFtTOgNNk6V7+G3i;01-25KektFo% zsF$C0J>~x~v$FbXlegWW#-gsQe5bfIvwZsnMt~Y3mr>JA3+pU)Yt9sq+wghLi!oi`Tm=we z;*cQK;-$8>KRa6uI!xTMWq0VK&E05|$m2^5Cb4(a$lQDbxTJ^!1|0ZQc5bc@IuS^5 zp{NFhg-5}kl1LRm9tgG$pS*$mzqXszEXU<}M?n zezxNDSxkNY-0@?KeI3;r(sGTC*^!B1{& zo;6nTx&n$#;Lq**FFum{x0LcJ_)FC|o_!wNHSjmi*e8I7wt;~wD_$=HcO1Mo==C?_ zQ7D6h*b^SLFjQ*l-Ml+JcOJ52TK`kAegiBobQ%vFQ)LNp@lZ&Pp^d!!{BLagi=~1s zpxRPbqK9_`O+LT4*tul9t)biA)YR1e*Vp<F)Luuy19cL2F)vu$zVIs+S=O>JW9~ zD)M*g%vJ)6b7N_CST8Fp`$2H91y02+$Xewd%VA)W!56VAlZ3&EH!^wu#|w~`lQWD+ zQ7V_+aINFTJ1BbfJ93jOHbnZx$Hmck|6Tmqt{)FLdll`mua6I@)PU`og}}Fm_=i3k z^3>3FLyvc6O;O5O$AI|!w{U0v?pAojev+7KO`%mLsYG;*R#6UieBVF=i5)*~FqT7K zw4H^e3Ob!qKnu8BurKD?+7VZN1P2F?K?@oG`gQMn4aj;242mOE(lkZI*|dRz%|Lc4 zh2i*KF1eXeyMmQ>Sora|ZJmmW3hDoBS*<{QQ&N~c5G1`fuy~t(JT%;A;FHkU;J zWi{*Iu`F$EKVcc#2L}yPXjZDX$k~HhlM2qb-j#{%T18dQ1(2F4O?CazAqcwNCo?m1 z?~XAlav8wGq-zM!c_UOf51MaEl)1H6RR*>4a=FJb)d+z-yx$;1&4LKbtU&Z4hua0@QMMxau@C}`R-jB zik6<9nCqRdL#0!#4N6@@vHDT!Y%nQAJb!0&w;xB;(%M=Lib2jQ;DnR2^G63Oy$s|m zZ22=;dA2zU-hKxJV9$i2deP|zy-qk4sczH-C((cf24?=ogMaS2lz}% zV)a)Y_jq5?L1bvtps8k~^0 zU53|ROS><=t`)gV9NJ(QHi9lY%^85XF?X#%RFR*THwPtr6-=+gBh|}62QF_CqTe5> z0_i-0SOQXQ;0k)ZVH5iaVhS{W{-o&T!b&hu*XA#cMU5ZqEC^IY|i=}##Z_}$lKzZp}+9`h3 zPy5QI4?-TefpAlVJ)QTU$M3+tdNL<_)B48erI`g*3XW-0K*S)kLW~FvjOulS~ z(g$7q&*eHcd{$I6YfBIJJFy*?S^lBq(|h9!h4Xw*e@c`SHHfz@)OSibjqm2w zTwn`R4B`xpg4}Z{CXSW>O{g@tK)wHm8ItLToFLdrveB5&a8Zewe|RE)`)(EqY1P88 zNPCIJ>3;objrjw|kH;fo_7VqlvWLn>VbVY=+a#i&Zz-}N^pPX~?%m#mPO4HUXO<58 zQ=FicLa(f*q7s&A?lj(VXJqouwI33Oo(qw2 zCA-;=qK84oirjEi#$!oi+J0W;_}=!uKAEnA`{QM9g&jC>;8AdJ*EQj*L{|xVOI5kH zA4NVJW1u6ow6?Y;v9_X3PHRpFOU~19PImdU+l#v^3}J8pP_(>zcSj{H41`j|mFFK> zFDK86*Ym_hM++K!-zk0bb>HxKAbxGG%OPfTBH>E!^K;xJg)SAK+SijRhz2cYKQEBI-_((HHc{3fX7i*0)lCLSqP%Ze zCO^Nj2-#Ob3R8l~>M@6uSN_Dh>_YD$+$(_s6)x_Oyj!fBCoV2d`0Sze#lS_H^MIiH zwO^bd+O%}%u1)t9p{Fg1+Sl|_jQ^XTAGKA@Pk_!*Mn%!g%SC(p^XC^iC-0G3il(NB zZf@%Q%#m|CgPh`P=Fw=O8rh39n9wovH6WF$Jg#y$cqw;Jtd#T1j^bjd0<<=#JU9Bu zCd{7R_Q_NRv=(I+H_elfklijv-P(&BEhv*vi2IU9zAQ|3z4;I{`t@sATHo_Tub8yB z@^V%AcV;chIxru=^F>{Wv~o~HAg z=|C>Jl0IWVTZ#UtsJh|Jk;Jsu37@BIe%NkUfCqyajp3eCdGaT(YHYE0jg?QX1n?tK zHYkH3e{Qc3X`T#KW#yCL@j}DGD7S3c@`yw7M@s$}AT8`0B(1OaV0Mix3~X$Eq+buL zvb~E-9kjNPsHkTJ?DKn$9%TpP;fG>%kC96Vk9z@H?V;iJb+BQBevmE`L14W8UuO`3CA;^^M7ntE)Xv6L^J7 zWG|d#%9R+G9X^6wvWfJ=J$$$kgi=fCEk`ik4P2eH^qV%FMmvzCncnj3>`o}=YLm`r zD2!X5o?(~uD4g%08ja-P9x7X4-W6j&c>DQSNbz zWFbkCGG5w+bU(&PyQoiR&za&<|r){0IU)46wnK9~A0v;Z$OmM>Z=kZMxHU_J#q{uu-&x8J#yQP8(X~BBP>eLEou* zRsyabg8~N@1&$n5ICln$92Li$MDdG65_F}lm8X38yTCg$jD9|6V z=}G;i)C_UeiqW*_MTI*MVx%PFNik{~3HtC6c)&=%lwdlrf@;>E+VAgi%eo*C1v|l8 zPCEY^Z3yQ-xO?{ryM@sUUgv5pniC?YcY6MQH(MOi@5c;u^!>rs{cy5q)TcC(!n1o|zS+|+`&2`q8{!UW9_@Sr>H1}>W|mIQ-sX5|etj9p*h&8W z{wHN91S@#Ip(-*Fq{AS-^EdpG+XOXFuRLO5VL9rx>WW)Zc~fik_eLc5S6Iw;6K-y9 zVIFIRQYODPgptBP^q^x5Da-gmKe#e?C1gPQfA7h<6Ej-r$d47UpAt51w<1r&( zZTg>Z?>L-=)`o@v=u2VJ5i+6DJJ9mOly$8`psZ6h3{9vxy5qrHW)^@hF!Oa?SL0WY z3sD#QoFI4m6Oi>Av=f(eO#^C;Bu)x^U@&0eGyL=37X7%YCi*X9G;d2_XQ6hl`u;W7 z($sWaUAmzjEpZowYFoXobK6XJPRb|6R<9SN!1o`H{dICgrS``iC9-N=`Jtu%zwYDL zrvR&qSyw(HP=3eSmA78M3=X61*T2P67ykX7k;}LK5_aLG_Ap3|1&+tNM-&;tI_3<{ zZSdt`+$D1#==>@&tCE^phYlQB=OJgMAcvD=1%#&uY=V@?J)lZ=@7Y5Ek01P!TS2z@ z|4$qn#^KkUwh=Kbmnn9c2}1Z+_xBqlmPGSIO_`mYt%UUq%)@?{que8?Vi4#ykjxn= zH?$<3l!`w=@^?o)mc+dNEn9f}>35NOHFlPiX^^EK;G9*rxBreGgMcy31X+>ynfEDFLWToRc<0rtR|8*J{XEWm5BK)ickEa+c}3Fo zYPHf7ynIkn(hLGW8KzjB3ODXwtKv{i)Bt#WD@*m136=)v)q$kY$(Xwu`qUupJK2zH1J$Kl-3A;Bwx)dglC zr9|{iHSgc=5fr3H3kcrr4%iV0KEvpD-#&qJq)HgXmW@F@*z5HC< zYz!%d`o#6?lQLz%F^;eG3l0GNCfe1h(fQHCfnf*#xly&Mu|JPa;nSbOcI@Jop+V?WYJa_egqmWyL{){xRmer8` z=-Erl=qJH0#lqb36@ufu=52KxsM7?ZCBHNO*3zso5_B7g5w$ylYyz0dm~n>bElOB7 z3~GFYG+VqTe{d<^SLhE&^L|93GzN2LoT;2al_9f&T-h9jsSJps_gMa5Yr7l zzP^|z@CR)OF?1L7DYsX0(%{Ta0w}AgscBSrd1l!5*3?i#OsK)ufHzMq_ej%B|LjJ6 zG7((2gBi?M-Ea+q6&_(c!w>g<3*7Q>^gl%#I3s)njs^%x(oJ*NPAY=rf8VeVrh%e` z&$`{c?92I?+i)iuU%&n;Tnfh^+vpvopP%1ufJjo(v$xMy|G`3Sz#8sMSCkLEmlUD) z?Ab%(C2<$NE_6YlZJ7&i{^S6^$Gg^F?zxjB6)`a&5Gi;2pUjWWjE#_Z&@+*O!yJuh z3X13Bt|982YxBI+V4WEDXI=Vi(V80 z1!h8$#eYY^%86tn4zb(=O^}3wKroJ8%C*lg32%_BoMU;N`H)P64T{-FIt4)>h6L!F zkfSajQ!{G0r|Z$9N91#o+A#(IpsDNxUF_=aZV|nr>3J1&9^bL5uz0r$n3Wb{yeTR_ zeAt8pt*E2J4(Z{c(1n*q5CEBMHtnfkMP!D9u1G;Vl2QR03Taps{UIs3x)ut1Ry(Lb z3f?{_)lzEKzG(Xrb8U$_I zWV|KW!9Q%~(as}`1W6<{Jr-@^4DfT%xKzs9ka$U>3Xizkyd|29VMqoJ{%KlBMI<&Pdl}T` zCNA}D=qYg_1~OLxR3<|Q>dv=`?K7sQB*dlkmgs4&(0z$lciF3zsi*Lb$zw z;|M*E?e_ZG5u)v>p5-_D4rY>%gAyOf8y}y-j{}q+>WGL|QnR3E62$ z0O-rRpx_8Fw!Q$L^6mg!;48|FDY0 z#W@8-A2rQ&CFd#)NU)?VCg%fEQXJ@s72pOZ%MW&?2|ZJh*P4_<5N7}gA)|rPTWta^ zCtHrK$sLpzu*8tp`1JHAJUG(!K%PzS;a+}`9Xogah6oncxS3t-gj-`PD0I_DI_}W; z8W6awM1No3f9aem&_c|WCKJo~g%)@f`{Rm;f~~Rzo0cXDxkM5bdU z@F=9&Zj#?pL|IME6gNKj<*R5t!l(|!aW=+&Xr8H_td}F#>>4<13~q!-Z_1E@1KHEl zlXO~>o=B7a2th3vPKGYq@B_WTYQsnL^z=BueqKy>X%f}E8g-6|z_1C!1Dm}c zGKF5$jha1B;&N^}#E()Q(}}Ob!ow$i{Ak3%spo1`EV=P*Ly6Nw6+H0v7&L%YPq#5O zHPy6a)d1P9i8K_5Gy;{2g8_*(zWx~@J3cgYf)VU~fd~G=bQ24C55RE6ITmAAUm}$hEFO477P?V#~%# zDD+W^M_>U>V@JwrhWK31b+P=$%)oI}--qOa|BoKnpoYicm;L`XOmjRi?W0$D2AoPx zhrq)Y+%o{6q?2#03xbueNh(t1JyfN3RQKW!($?K#wRLs3wd1)}(==}&$7-%i5|}_s zK&j5HjWpzv^>~7GNDePyBmjKG1|{+fpFVv$J~C1RUrz&9qdO>dOc=C%{u~KEy0Mef zyrPXLFYjGECOHT4@xzBD1c6J`anF@Jr;XumEuGNv77`wPp1D&{P{5{&VTD46QI)b< z})ao zSvlY}xcV8-vrw_Ni|Fwzlu;Um?me>vGqpInt`w6-#NHzkU-}P)KtC;B$Nr=1Tx>d{H9b;p)@&v#=+q#U9>F76$YO zS&{UAQ&Lh|;W824;tV)b4e!R>s#5~)`?cO%2B)v z2f`+(NsS6cin3TSn0%RGSVAYW58Cbd^XHdPT$wmHVnzebfz>6+8?sG9v*_6!yW5oc z|I>s429rq#Rv>a%Hh4sKBNIb8!r1|wWo~WAlP3cGdJ@>WjD@01{emErk}se3#mB0) z&ag5wzoTd6BYADzXAP@QD&Q?~fE!E3X*}ejUYGphKmw)K^c@%ZfBW>Rd_J84<{lj6 z2G+uGZpZb0xNLM_Bp|y*Br_9ih5d~it&RC)=LfUIT>NAgJO&tyyq0zVeC{9lQ>Six zt)VAfl(6obcraIN`*ce`rtj7HlDn0NxZ- zMy5RGo43`ZY@#{7L;NZ=ITZ{rSoV1b76MC4g1i6hj^K(iY}awZ#`{Z-EY1ujn#F_J zNRYYZ1CHX_+fM~JEj&Cta7Qts!B$dL^~D(>8*czGSO?yLTzf7~SL6cM%_j6&F}|e` z!X5m1>dBKX3dUtkKGJ%4Rq%v%h||S}xq2Xgl+Kf#IHNvPKf%52!hB%m|j2m5G}* zMsSvF_4851UE8fJ{@e&t9svH8SG|Go+#=w&$jQldWE$**Z<76}ebT^6-}mOkU=*Fp zWo}ym5B#udJ^41T9v9P8o7va|f`A%=E>Y+_xeW>V9=gK@uBar7uMT-hmvDkl!&hMc zvquuz-tCTjEJu!I>t51cG2WfC5AnDG#E{6D7-;~{Q{-QTP>g|OKq6xd&{}q7#$Wly zv}q8DQVd?IqsNXJqvYbaL`d_T+;Un~r{xvETQUIP6DYs5cBk+;)Y%tT%A_EjknDj8 z3WwXd${ROskSY7=cEwv$PvMexd8Hy~Q_wK7e93gc*ifgI(g+}&2;!qeQ`&7cJCgFA9WJ{I8x_U!mY#PBqAU{ zhX%nP0FV@}U3R&ke)*M^d1k6x%hljCrCMqH$6+U;njGj)v^6oIa(8#veyL3l*R#N- z%($t+FCJ%S9G&Q^)?F}&TwGXaDjk`a`7C->2bVHMf+;kqV=Oww%n)7hywU@XhbRfO z0AEv;!}Bx^G3;~d)Tv`IzIiQvvA|^5T9Tk9S$P`x6YZzEbHIw8D_=e^w*4uuaQ#cL zYXU&L$UHPB3fk4Ygdcbr?csI>=m9~MjH-r(JL)$7!l?+WJi7GbRn}aoP1w;JU#Url zb7kcTI9$vHO>Aw0kkYH(zo$XlO1fa~-o1OsT_24a9J=>FC}V=a;#L`C2+{!tw_FnH z(^Z8dx0)&Zs-}Sx$dZGWmK>0}_)}ukVn4*Jvo+T;KXF=h73FOu#vZqgOSaa_iIwV`?3KZqh|-Vdabws;`)beqmVgPudWI z&z-^B>s%n}-XRKz((;d(?A}7E_Be@hD_;MOq&tPNf};vD&N9$<_-6(3dE3X2f#@^LQ6suBR76fN;bvaL zT88PP!Q~zheI#~=7bvH%Bu4cA4gRd3rKXDU@c4miGSSow>l?NL(4J~Zrh*hK=px_~ zlJVc`7Q|lYe4Td#i?lFUzqT}0l*;)ZIDe1@C{W_P*rB- zqGh-}d~%>+-h&e`J7$Sir5kNC5a7M%>ha`U?O@6AG|dK}cwh?OxFdGE$Z;&PL|J!X z1`~~pv69mLU5jGt$|@>f0oX{)4@0K}AD@DWCn#i$r<>mLai?wFB0OS&M($~P`hQlkuj_qn^%g62k{@~enhF-22oX&R2Y~dY72qTt{ zsJ<#dO(Q3-xn*3F-og{aOIn1%jG)rCaV$t;bs^<;=@~3XYo?nT8SOSOF!+L9R!~&5 z(4Pk3jj6N|Xhrj!#*1h}RV^&WJXnKwoAS%bCg9k_fscm3A2M2?uyzSfA`BS8>jH*X zz-9bPvHh@5Es+BrA9IshxUpv%yu%Ptt>S3lxB3O5{gy>yz+n_`3^0bkdD60U6>VY^ zfJDcwH3!lZg&FqoZ{Mn0T3Y@@B_4C+s{mtr{B+botPp!HtUYt&LZeB5X)WbOupKC} zxwW)`nwrzVE?N(Y@MUW1>gc}W1=y6AP;C(kz6x{kV#Yq!)n7%gl)hjNMk=xR@Z@~b zhJAki{%^3hPA)DMPzo~*AO9x-y5Iy|@^2kgo2S}H(*VIvaz!u8umW!MqQmZs)frvR<0 z^NK3dX&7pm(~TRU2hQ1H&|^Bpffq)JrYI2;@)ZKFE{VcIuCbqd$-)6HF0KW)&+`9$ zEwXc3rwMAYlT@}9zLD(p&~~wJ-~RlK+cx;I)}F!Gs%5b-u75|h3de4$Gb481c=Ha4 z8Y6|y<6f&z$YD!c3uOMtzCEK#UF~Y>2{O^3K=cM}Z=ROR*3c+*{pGVBTqYg-N^pIh z_*Y!uc}YM&PeA;>JR5T$dvEty_JgL+ca+~$h{_2xme?uIe!WqGPkM)bn*1K!2YXd5 z+sg<4%xtM}S4goe8jG{_Ou%r|4wqwzT}A!Ve-nP|s-q__Ojj-{Dk{w{z-u{jv$K=1 zD_WM80$DcXV6ndXK>>mLUHN{R-yY1uv-5H55FCC1T+ge}v!tUtq4rMI6kJ|j4&a(N zjvfd(Qwhj36`?TKsSdlbuC6Y8=0Pz~B5JQugQy`#n))&|z7s z<>`yJ3Wz59^Y>XQ+4>3Y^^Gb$>h8-7d$TuXA zcN0Gl){QPmnec=9W(2N<=)iRRviFg)a>u3eGzeSoDxTl@Duazw;Rs(T(qLm zQNJ&bqoh7PCLJZxzz0IP71jCGd#8BN z4Xps0Y{egeLBc^8OwyW144@9zS5|rxE$D|_uRoWe(FvN7#~k0gv-%_*BWgo;a^fL5 zO;c3f4t+Q0+w4_9NosE%7J7950bThcp4sr-Jwq3%U)r^d{M*;=JqVCdt=ideVZM4rd8!%x4m{^Z>xIP4}OMu`HLG!(a!6MW$ z?Z3x91E9_WvtL|Ue$D+P-3roJO-4XsSlH9qpX)QX*Z0BmA#|3OfsSrBVg{idLm6HM zGmSi930%%Fn9mfEPgn7G^Eis=)jDQBkFD9DMlaq9xd?^hW1?K5zPZG{eWy+eE^p=H zI*TFU$nvEPv0FZL9GcV0^$@W}tFY_thq~i<9gOH3nSZOl&rzNL-BK#5Rz;g8QZ+|E z0W`%V{lEwY$HMbN@OMY{C|tR+E5ooN;RgobflZ#`V9-1t8N?k}!GFBf>k3|-B#A+I za!V9opFCp!Mk+H<)DO0>HjF%)+8*ML$fX;sxShCjD~ZN)zR_WnPM6wSSVUyM(+?fK z@K96;#8e14#WQEl{CW~*h#c5ac;g$xf;bYvGrqZn1zrLTXw9V0;m`dDIeG%1OnpjV zE8krfG*Z*yig`=)y94|#8U;BhYuuoWc z6Ijpfd--PYlAVnx6H|Rfzf*$O;4BS&^5i~77>BI(e1*!6j|L6_>4nfB_G<6xqPWe!EyJXmcYBKq=(;^XHaLY7D#>uH`snIs49v z70K3GR!nPOT576&*T$enkJ$2lf&@FutM*`(I#gip&2NSq^{~0Iq;H>1=4I-7=NGCuQ1-}Lq@D7M!<-bpxldUOdbUWQV=kv_>5xigOaGJsiEt9wpZW+v$~2(6^cEP zR6B2T@iZnkjxZ^guLBgzqoL11Cq_;Vp<@?2a%B6#XGx?`hCD(>+v%GAPb+t#W7Mzs zjlNf;BQ;9so;Roa0^sZ+n<9dcldE6}4p$kB+O~(*yU~z#dGe`n#7jC_8k#%zjVvwi zW5ne?m!ds7qT?hR09ysDEL4@fcAl^WoJNR%f~naoz=Ee@+qTVt>NB|}#?>2^mX}Wg z?2b5Xst!iP5CmM`LOQV^LEgi!NOSh=S;Fq&>&VEhXfn00p3p`k2;+4t-UIh8x1l5s z)`O4_ z`S0<=8k!f@|C~)yLZYyQ6&jcV45Uim5z~4mr8G?pl6w~{%AMXDIs^u*2J#7-(s!QB z=kwb|J)qxFt;|pO0!K!Cq&2@rb1MhhIJ0EkZQ9d#Ny!kHT=wH`c}d4c&K%|Er^Pq; zXF{cK&_~e+D;C2=VIrpy4r1Yk+>M8PoT7t|DPypX{t*P||NhLx_l64>&^vZ*DaA{jFl7A=x%+C}RrV_l!K*d0KVD&E z*}LF*9p)q+p#Fb&B7SO?b8aQ+=~GI)Y2saPmN0HiKGDkx^?Gh@F6q^)hhPsQR-V|E zFK>Y5OB%Cpzvf0&@xW(7tSc+BPF=jX4TXSwMIxBaWSn{1b$S^(fmJ+y=hpE>l^lcWtOQs zWlp*)k|bm*E6t@uqoNEMmWmL{Or}Os6joSD(x4EHhL9pG)@p2x87`>`LF;6}uN^@>%iVDv4Hdzlw7ASjxbx-~U|DyPD=%Ujj? zV(jiU3$B8(SzXik-A7kfw}|S_s(0pK_5At1z60&P$0ZwDdAPXj+`F`Y@$21Wu#1rP zD+=KiiHrjTgtFL&CdwDCuv&YP>}X^;Y5URSGq{yY(z7KAX-Gw(Jt z)+A``+5GzC>und_Oi&Qd8bq?4dX#r7$7z$pcBqG+E-3JZc|Q1DX?E+OR*v!Vjz5gm zqmIe-#>IbbY&0iM<3t!n2QNt=pPSE|8JoT6ao^wEitv}2Q%<%4#u74!Aq8d5|C%U) z;9-!WDkQ38DX84@+lIMM{$1Zzznp=PNEi_83e3+h>!{iB>#FwR`KEac71xV$NEjMf zmPYaQl)|;xcz4Z0__m3ym1_lNa&a`4|eMr2Pma%*H+B>Jko?de>F;V0B z%a==U+&!~$xG2VVk5zy6XZ=<1bTkE6uW-+G_{(r z$6$kWb94Ky#Zk_KONY!_3tpr+&b|N63TV(&Zfq@1d-PCawOliBEubGtp@^IOY9+c7 z*JIQFVnprbfF2ja=AfT#6^ztM$96T`o)(|G7bh_Xxgui1=|_h)xwA7zTJj*gOXR4NnR?IqrwBTA9DyydV+lv7EdowsNURihoV{yR2f5`JcJ zzy8}#^MMWFGU$cY17`R5P&#MW|2jkl&>9{+8ufUM1r|GoC>+X|sXKeNQSccG{UjAN zwZTFA6kXCaz40(hO-=1*Y)sO4Abve>td)e+!m(7@AN5~PcR zxp{`&L@{ia?$1n53yYS$M=m&z`H$s{`MbSUtmHB0A3ju*j-v&9bpPX*FV?{2znY(Q zS(w!?>+82~EhNg0o46^)+;ZLLtm;i|`R>G&M!Bo!mF`NfE0RKsa?_HMHgSq-kadb! ze5Ayv>iy9U({8_M*`Jo+6t}MxtqzBf;K^;jK`jm+%*gqb^dKPxq!Ik%9%I#50o*NNGO z@5ND?I&j-&177ZaL0whFfvBSi!oWjk+5KVvY^A-jgne>*6=eVH#S3d8FL_^Yu+`Ce zdtV1B73Spj--B*_#k32u)6Oy(SR(fY)p@~8Q87WdNv^#@m zPhYgggV*EjXt%@JR?UEv54NZlPao^0)3|6oX~oscOE0L8TuyB1JI2`91rYxg3DfOf zw*x=V&;94G)gvADjdnWzrANpjyyLuL?q$smtqxGpg)lkoQ$inG9F?SG=eapNjG#P8 z5`k`G$8O5E;Ad>*F-pOT$M#qq*{pYH;e&QF)4PR9B7idvY?#Z^tuH8j%um&@JEnK7Q4?Xv*{=m&VhvydZq3|qHu zeLOGkvKXSELBpk%v-9LMJ#u=veSLe*DH{8~sq^$c*< z8l3cyb8?>}rB$plIezR;cvjMbVMV|uF z+`M(m0?$}l#X&)OB}!lIP2+x|vlWP7TIDpG6KDRu@$a?Fu0IhZWIbCGyGE@JUNP>- zIk(bvHI+oYB|$-lLGvtPzw|sj768W@x+jU+{?_kbP2+ljCyT&;I_ll&aiA9oe5f7& z{L^z(@N1&#toP>0wY9a5$a>mKX-AIS0t+vRI^<|KV>24KE67ZwXv%lYsw33KCr;cq z`ojK@NBIE&hh>8Y4T|K0IZ$y8U@U%E+Z#}F?H_gViih3UDgKfu-ZpucouK?|itzUx zNAL2?y5r?bmjpW5^wr~bKyPz<2Zv`sW*rHuLIPiC za^xFNT_M*<G!twJ(|JQSemkf^8av^jSt^8o0uXhmX#}4I;~q*nDB8!`5?qN z01KvY6)MJx7h~%zY%V6N&Md(AX(wimcLMWfUfAfjc8mv}PQwfg`bme59PvyVVm5Vl zgn=vu6>3um+)0RY-!aN()mkHA^lV{DmQDt>;|*x^9k*@*0Kj3I+nX2`2srZgyNoUT zy)k3P46I)rnsygHe!PuMig{}feaIoYzxw_VSY5rn&?;a3zNO5IT?<2c*b>miqtBrqB`1{vt>N!J(EBr>~WaQ@yQr;5x zAyvNJViJHa4bL23-|^%nRsHizh+U+W@eU5#jIX_U{d(ZH$BCedl=cA+BP1VYU1O2w z`RQv^<;y2nX0P}#>s|M|r!3g(&fT0wiJL$`L5*3WKxEx%RFK^vEjd+|)`4VtoClfm& z>|KZqaB`B>KR$QB_+#5(0^e(dt>qVNjw^X-qrocFTcY<12dZo=c7l6etW8h=TU?zRJekhLpv3*+&sHefo4)q}z>OzD%w*s&e~)*BCxcec!8F zcl>yCyXuSrpvEoJ^80Z#(IZ~ER=lF=qz@$`E$`vz8`r?hZ}Hztx$MTK#8A+*=>z{W zt+CjqUu3!HyN8hL{Veiif@N_3)!n;yza@%MibAhk&_dmxs%A74fr%Kf+ki#OL1_H~ z`qvN_`(s2ja$+J5!M zjT8s(BEy=M#H7|YoLyZl8ThF>6*&Lhwdz!-q+S6dqED25-%vhW-J`H`4$%c}(YETd zH@4@cC@DdkwWhW?{P&U0C3%KGAK5hJ0t#QA*vIMzgE}{H^LGPPGmR;`m=**Zqx$*J6pnvkLXEdEW@o@vf9N*f~7;#^K zw4Mxncv;~108CS7cZ-~t9$Ghbjr~s8MW`#o^}p8i!oM|#kXMyF?D0=zVj7&vB}D?GzQCE)>84oyG;G7zQh=E(i+%{ zaX+ERQBhHmq^jGug|J%BbJ$FxGMzT4Fnb9Zo!odPA#s1UR#GEa|)V>ZYN{_QC z`tx|Oa}~CQOuD>?^7w5pk6HY~} z#p?97zWxJU_bky6-o>_FOO)C~hiC9|q2xC6T+hBJ5X~q>etmm0#Oz+=)~&^$v+dz* z2p#FgYiWf9`Xrt_3NI>0vl%ngnN4}{{SBo;>6I%NcnBXDH$-pqlv~HxnqJmm(9VuD z9XJD;fvMe1?xUJU>h$S8Ab5~K`G&nNk8xM@C%rn>TJ#b(WFDrp2q2ZojzSCf~ zwI8|r`T14lEt(-LAIKn?b}so~u9iaNJA^Utvylq;0p6l>aH`*>>}LJ8boW5mORvtP zE}Vj1elz6+I(m6^1S|8IKmX$S^AZ^V7rXFkrz2YqtozoU=pe33<_sMZlfKNrm7xF4 z3VbtpSzT55?x073Y|;=4P^QE-aB$7@)MPRRfWKC4+b+!;GkWwN3>84fi3!y$xost= z($U-&nubuox88&=DVX;(lM}%!4YiaztvEfRr*Y$4-3f0ODNML_Fm+u`V`EcO3e`Ry zSUX$woNIzkb}D*_@cZdY=EO6-#HV`RZAi4O7E=)8P9fcOOPX9tpz#GEI+U4tO|2($ z1TGlLC5(wx6+b#s)!W(|#bhZiFj0NR$bC+eyKryP@?$*m{l`oUR?Lb0NfabqWlpB1 z5?{pC&y#Yi_UOlm-{;b|RY%5(Y{Ryce1)04diBD+p?{ED+OXqK%UzLRZ8dMW+r?`- zMZO#dCegJVJJNuWnm7Wfbbnq7Ymwd;9GKzdH32~DS=2fv_iYfrWK7W!#Vg0MumJyd z4*7VEpYh4l-hX;{pfRJ}F18eqvYvihCpH841!P5R|B5!RphKb|@|T5=&I}CFx{&p> zykU!~_hGx@y0-dVRzAT&Basv8Lefpn`wS;@A}ed)(p6KD<(M@8Kok;ycIw9I&j4cqu}mFX6IFs=UmD{0%)xZ*f&c)YGZbolU&$VmG% zD-V17BUi_ibChdeytve9S$fnAk1|bt{V31x4{&`ZU+M&DJ>sXe6CbWJ-JYL@USKP? z%NmUdWY!@&e@(c3WToZK9Rhqc_d><}nNE&&)zx0V{&)JjkW|XatJ_}X;t@?$qufjM z_%L_#r3eF;fw!~N^T(E*?i`3Z?VqGL{w_ssK+9dV<2c&iS8xA`9Hij8nCCwJQ|T7H zQ)y{wm=w)t-{zqjr8>h}kEgFXc|X~9kX*hIq}LSDO>%Q{bJM#SXo=S{N~Qkb5~YNl z*N@rknRuV0ajy10rI6~L>1#xCe4+e%`3L2>yh+WGlQ;jP=(LO5qBCEuuDN+dWkrQX zxMgF-t;=R+W&-(YVM_d{S$N~xHEl7_Z;DlxTQ8N#(=dySmZIr^w}gg9s->9o{n9)9 z`DwZQG^}SeM~xbFA}1%A?DY))Cj({b&`XAe!PiZc*isS7 zK>z0IP8U?Wb#vwxfTF#vb{aU*{v`Kf6yN&!;f$Z>pXWd&FEn|3dK@Awb+yts%(j5E zh%5tFHP*IA;idC4?Or4Eex13WGKoUy2u)RS#1NNhS@Nr~_71Pw{@TL~`n#$nz8{0f z1${a|v?Y@n3VW@};1M4TKdoQ6YSohRMf`#YwUkzq*Zfl#rRx16$60u z)W1=azGqL5g$}QnY*TQKd{3-@kQ0s_U_UzcStYxj`tpg@-MW6?@OzM!R_)n=HpxF3 zeXZYg|3gDVKdFj)=ND+!rVvLAv?dhaR)2k)$6p(%EI+t?M&O>bOkQCKO|GV)p$fif z$OznE#IS9FTMkP|==b3C@-DxBeiVc=WjL>5{tLeI|LR(w= z0x&w|dv(Fm0flJG5ouhRBZim}0d<7%M{BMO)x7cVnS1PHU+pEAZMQ?#)pTLhK#O*& z@zWEi;%W<En0McX36d}-$S$7&P+c*9Q7t`u&roz>->EP>^jI%yjo@IotOH>*cvcO0@>Te zY6p)89B#pa1;+`}eB6GBj8u^Zi6hkT;#zN}yA{RI{fCxWDwNUolH;35bGipfx^Urw zj-Fmd;}@=kpOITuOM}~OW!{J#d*H3srb}NCo#Z9LdpG#x$&;nyi=V%J+Y!=IAjEQc z3%m;B?pkj@|T!9*r zahwj4DNN7GYyV(kM-lss@GXiH7Fr3XPTC|%BGYfCxbBCU`<*^>hZ-0NH@n5`Ibx8` zEx#R?t;*=&w(`HzpOL9`cT!~^+3hSWnP{7SmL?>>|n zz&oo8m~8Z=k6H#3Q&*96dG&5rm3YQH6%xSpV!w}BkS=ra%rfx~`P{Ol_zO1bJOBMR zN&tKGn_?0IQzr!p+cYVdx4L^}c1Alart+7)R%YTg3UY6$OE5vgAmFJbE1r4*3Ze9Q zG1y`ymYD$sCLy1{4$Dz9R-0BXd(*Z}Ly&1qM1*2QWMui8ttf+-2}N@PhJL$8&Sr1b6vYd0xu?o-YPZ-aNnH z-h(cB?(qI#2L}Nng(z@!6X9_-Ct;8A@`Y(Or@+#rV9Jk%_>+{lg39DNx53W?+}E2j zL2zkw-J)S&8OO)?#Id!}R*FQ=||{`@&B52E^=wav$<b5oYPK)S8_;+u_^@!OJsqEyfUNx?cSv=Ua z_qPo=S_QxXQYva17%0Kdyu!QBYudCd;2-C6E0}sPv$yXcW<6-V9}QYC_eyzrOKD-k zE+zW2TX)o%(Uym^`xH+WV`!C~P*48F~_g0@>Jqn|vR^{gn$~LM#nVQ=F zOH2M&KP|0R6y)u&m|^;g`RbawIz{H+nRQwFX<5eM!~KN^_cBNgbN}+liKqvXKe`u# zWiUdbf@NGAq{v@uW^>_V5Q!ojHanrPXnpr35IAg|>kI1Mdj0|L*!H~l2@bE@5{fU8 zPYMpM=9}Wrxrb&uw}E{5O%MK>~2aU7b7{z616TDMOXmx!BuX->FjxO;rp{6h+U4yLZ2CN;wY^MW5UO9rKnuUca?#O-F<{1!c6mqg+n&4-fiXXfgbbLbU*d_QH-(S>Sde*3wvAjxK?*O{6aMBMls&xwiz zc`Sk&!ev{qhcuyC7$i|R$E|n^b=+`w-T^ZQhfaSKBS^5K@)rEoUawXg86%j3eDeNp8@~3Mpq&dzElG_ZKZ>67-QzVCRaM2PKDMDw*CeokT9iOSiUBNo zJ?BsIK5A;6g4Nm&pRn?{ruUipi$;rUBu2iri#hVoJJ1=J11~V4ib0PRlp9fo*7{;6 z>#sO^4hCo!j~;=R^0I6lnKx*snBaq?Xg$Aa+T2cumjnh{;bdghdqT1gRg9Q^$BC~E z+90!gsQ-J?3@v_fwI>hRo5_V{ieD!T#?9^xaez?3I>FSEc`Q>HZ>#bmgR+GGx_Qfs z;H{4bJhK++I#AKmH|Re>z=ijVcre6a6e2%1*<@4yftZvaHwb{w6AzT9Xahvq)B{U^ zt$oHQGtu$nr%!un-M7~R@LG_g=svD_^+X$&!1{ZtoXKM&H>Ii6A30W7MD)hBt_OvR z&COiKU=x#*-3DKm_hEw~WrhW>A$s4wtKZXBhB&P%n(>#D7rR!n*Z*GUM>Y(fe`4hP z|F(9+504L!0&cS7^(Vih0iSKR+OdilFP?#n)Z z`XrD`L2L1;kL9#}1%;s%XV+euRa_VJa3mM! zLFge;uLHDu-?1zDt>^~H#8itGhxTZX-aUI((8{ak{v@H?g5Xs-ah7KyCblwJ?n2N2 zW)B6J@n!0Sm^!BH#tnB{;}ILM{8C8Z(p0*Z08aN^qCz(0k-eyErZIZ|;rX-V3R9Pcr@Ou24tObXe z%JGWBnXm%_gE73$&8w?A5=G7MqO1RciZjNSJl^T z|K60=Je*O67N)QVioI)6Iu`!?;<@k~Ur`9N?2<02dh<#|+*v+n3`K9*l`Asi$pt`E zI{+UQ`T@p zx?_^7pQ{WaOw(O#ks1`V&#t_*Gy(O1k_4-hKr=i{ebD>1g^VKhp5W#n@Dz@lh2+EP zRM8?WUTkou{^GZdJr6(iyBaYCSwsoz)l4m$`CwVBPDu9nagLpE1H~vXNN*_mKkAqk zXsv7BO`^sD0d8Ppizx{MY$0dXT-~`s&nd=9NoqD!WZS$7ha#(_P!EfUFefL9{UlkM zL$_9@$*h_wx_v;lITOOa1^<{5xTX{<>v%) z4r?wA%wUM`?Px`^W7)Qlz9SdxsSfC2oi;E~CQd)wEM?L+d%5rni?a#Yi{6+I z|G|)It>Opx|B@&dZ3qG+*OroC4iF-hL=_v@IiyWuE@XHc62T_AN*oOay~agxxsV_@1+mdITf)==D@cJ!=NK4M7^hN3FQom~{_>gvS6 zE!sLWOO~}T=sz}k@7_T{+1u|?-NQ7Bj`RQ8gg_@CWZV;P_Tc1`xSi3_7zg{cO8D>d zHaet#B}Zb=-6cEiQsEO%H~b|rRxkpqD89WbNPjKvAair_@>2dNxFfy&RFcOkfBEo1 z6#aB=!oN$%*a^ERv{;xq610Jr!fFpOuPlmdvAqX!k_Aq^YG1yLRNLNFNlBup zJz74GDOJ&}k+>}g zlXJM`Mus|(C9Ck}rAPXE9336|E$Mam1n?m#b)nF*Le`j5y+d+uhaaioX#<>ZoQn~2 zF{w{{goU*~!(^IDs;XOrvE}hT9bNA0Op`HNWgrY}3jWi-J(^fa4Cu#_42m=H@>-*O zY35KbZhAMZqneQlniV8Z=Z|||6m$TR1P#;}yK~_%o-lSS6ph!fcSf4c?-pN`woVL@ zukUqX9CmdG#u+re-FwUU64+bT9$^JTMFwRr{Tblam?1 z0IXAMW^Khb1L7ucXah|Vt+$xX1@J*Er7?13H#n>n3)29zP?1>V#Mo>CuNxMpS3vTivQq#@NMJgT7%_s%wGFlCESp&?mQd4)%}*eO=0yDy zCr=JKI~X8Eh%-4~g6N3=uex1#PBTQd*ZJpXq3f1r&YS1{X546CQz^|g0**{jYk->K zC(fEbUo0FDeJK=!5VeV$56UNY0sPMh52V{{-8vK0-?*~;U%G6u%~jA$lrEvr9@VFd z4X*xnNw@2-o-m8ecb>h8M)aCn7&QUX2<6=_X`)PN56mq#a={ZU>RDz%iOn&+#0lq6_?Vgh>w zex`((ac6R7$QtjM{i1EUXi#RA7Pa|#>k5dAypc2p0ZdjuI2HKEPLI1ORsdnsDZIi2 zlgU)gqI&nuKRR514JkoF-tnUAMucx)tG3c$HvD%91VTaL35OOGjG>(oXo3)R3i=Ts zqBHw_ly6Ky{VWC_X#E(oH$6Vch{0w_BF(h+-R|8Z#7QsNNNupXYC7$w?P|Vc3E+;9 zyipp(ecMC9IU7xXSX7j?nVEvXH%-cOvj z%U0`5-flWwvZZ(t%-zweV?Q2Deaav~Y?Igf9p^gR8Q$K@Ctn#_sp3uNvvA>YC7X3( zNmfm5?Pg)Y1&mcf-BXZz@#01MvHvkq4;1LZ#^Cn_kF>{i8a!_BHJ+tT_vC>^QoeoK z2e-}O0Zv|CTY1jUXe_WTx&*u5Szd%PM~szl$%V(!`@i7(yK_8VXuD4VC2~x8*)znu zM~QPf66L3>Au)&C&pUb20(D&j$gD8_=TU84Az0 zSm_U%2(lxFuWqsM>9h_%x zWwQR4m(Xj1InW+>`}mZu9moOkj@^!?lQ1eUcP>A%o{6~=Tfg8gQMkx4kRZ!F% zosN9%|J22+t7X)Up?cwJA_Wuk8Jil7?nCsgl7zWUuxonkITL>3i{At5Q<|wfHDYXq z*GQ{Ytw@_nEI~H~coP#C$S42zDBTWaTjc}zKBy2ofg>45i0S%a5KmvMUy%@%Q^thv z3*$Sd=~C!Ogwd63=}kl6Ep_>xM+r%gj^?X&PXLkaA zhQ#5lGC&m-#@Ag0?D74Q0{{B2^0Wl)5azRGVWDB33 z@7MxS1wPg6yjP(Pgpd}Th53D8)lobL`udNL*7967@hv)b>LdWgExCiTyVR#VK*CEp zYn$dO1P%02NmZ8-LNm_Piy{QT_aX`5Ys9pLmYXRiW;IU>Q;M}8HM8RaewQUN5>5ECkzO&I2*99uyqCKWulSM~yflKA zFHa!_(8${}fRMxPlRwQS%vZQtnmH9T3Rg!vJG=1voD3S{Y0f^LbRYm2_9{O_0}Ev%2Y7N*4PWD^|hLQ(mrzS`rqgkGyfLq$P=3otF@uc!(Wjvd<$O~~k<`CAWFLH^Lz zof~DemY0SRl&g;?WH1FG1;LAj1Os)vUxp&g+LEh%xbn+MJwEOw-ixRSSQWt-60<#A zs3{dgkJR$tfhI$@ZM)W1Jw<#*w3MvI>cEd6dAG};(=UKl7b^iVbuhKGY(*H%Vpt(- z_SpgG^BJrb?1X4o(f)d|s}1yemd%l9afCMX8pK|C>G@TykN{7lq$6u!ps8h+=Q^Lj49)ZWwS$ujl8(ir%{dYvv z6ki0c8eAEpbw8SI)XOjbLI=97o1TYb;?;<5phyx0@WiS*Mr-_;Zn0L{C~Duj>~&G#p| z$B1p)v>8oe`h8j2F?))tf8ygSsT@u2y}114qXom26Up;0e*MKCXkkhxUAu6Qo}LyY zLsMhims9HF*6q7`^{Nj#xCgUoaIcU(i4SF;d#!tw6KzaD@b&Xsmp#O_;(Hz(%O3%* zXyS=NNwmIh-&cL8mN-<_js zO>Kegtl5^SJq;kUDfi>YkFSYARXC*_T^nv`&JRtd18aC>^7vlfqDcVbbNu}s&?@w! z3qe;aB+v3y-!+~i@^9IuV*;XZ#rEwrq))IDT^`w3W`hNZxh7=jayiOa6$PDu;^7!R zDyyHTxcCGRy%Wdlv)EgZ#6G{i6$*7b0k|2!$ePV4s3gpxCOKM`6fER|QF6JE$@zj> zEn^iPocSTdR7Z#Q{iSTr0E2Fp47ncyPtiCr-}LDO=`4PO4c=8Y>q z0d72%$>FB=bZ0U2QFmD!o`=xl78P9n`rV&T{ibvi%FPz0Xtrwlp2IB*t%bH+_s*}_ z&r{FL=MtiB>Hq52mB;Rk*Jz-BTiC{G?)sN*YmY%#RAQ=frJ^DR4Zuu_Y%CRV)D}g)*Ja&MExqci5Ex_1rSC zxCNrg2OXXE!ru&^qWt<7X$P`cwedw^fak|{?I9#AUJ?0EG&7%GH_W8m+TsD_w*a#uj(sYX-`G+2@9Kk zZk+=t5H1!IEGLlyhBSGpCX#)r^*f85$bquf+sNPPWDl zMO9W|)AZ8fSjlOjszz_OvHrl1wN{qMxkvYcNtQXqt$XRV^4Q$Db7M#}!Ye{BgzvtJ zvq+d+_bJdjc1Gr)q9q)*TK19?G4!3bDu|hYZA^%-!(85o+1nC)EteGr;DkU#tbi^O z(F6lxb4Gx*bC2LL0p76;@_xe?=N<^}<&s&Q`+H^6M++otI-^GA75j6Q4kag-sD*dIEac7dA2;7jw5$TFTe5ul z0Qo^sQ2}HrB*29#`^SFnwd-Y$pp6w0XwEM*Z4VRc2D~&f-@f0M>i0f}RNKN7(PkoP zlHj0Dm#}@%j|tb@=SMc2W^&h8L}a`-niNm`u)&-K)Zbi04wzFBTFLG)cog;Q-Fv62 z?%>ZW`NXw#b#~&W6~^2#gm7JRY+Um+YJpb4FznXgvKlbeN4qpwG+l}Oep-DWC~B)< z_R)*C zOmL7ps&w2kL3wJ@8Qb<(k4J7ko)KAk-Z5kGt&OiDwG^wi)|)$Lbb9#mY`d5KGad&1 zEOmPPvhDQI^Zc*>zIy)FzA?iiX$-3uj3np_WUVgl>9WuHM&07#;t+yPZTKeDK>8}h zjDKVP_mZm{3J%N{Y9wL|q&(XeB8iLor+**XxwPYx-{>JMX3y3H(BYzVe)V}(=!LPj zZ!nV}1NfqqKy+x@DdhPADo00^)+6`&mwjn$T!PK-guCxD>bcH0-+Zq7^a3Fm)rN*# zC|6QCd~9s2vKk`YeDrAHD2MhxI=9$#A()63=s9Oj?V;8)*ZcYUUZ9??D$L2w?kATQ zy(@eM6(E3iq}&Llr#<}lz=1BbMij$hi!q|9&P}iV_D8W&EGa*KMOiM`Nf8o|4)6&8H`biv;I@J%w<_6z>d*t3|e`D8$nb9P@@eH~l^Dk{^IF6sK{p!`H`2hB_ zXD3zt_g}=7IXe(E6a>E61*$dU>fa{`xmRjx67W9o5Dr9;I0x^%$*|(0Y3kEbY45fEbwzP@SD;^P_oVo%>x-bm}|d+4#R!~&x8p~-R#`VT#T2Eq9Ztdfm88U>VpvM_u|!C0pkoi-J=!4GbJ%*$US5 zMDKYvpYw-x>w15ywI)&P1DUdQ+9Cnq6E?jKdx_nsIK4{4jbC*Ad-YL9A!%w;&rQ;6 z5VlIVS9z@pir-}tVsLFLhCIuR)GS+(8*L{}oP0pz=P_z@oro4zPGDQDj@&l#zYqE& z`@dpFfz3L4dUmjKs(NX$H$EQQmf^leOYwGq2C&433LZz1CUMjVYP9jZ@-dl0tOlUVq*D$wyRCII%YV*^X~dyT$h& zb^glO?lE1vMOrO0+K)nI%)W?UJnJN8rLK^rM%*1ItMD?|?0cm}zc!o9gixB>Fm-uo zn9rqrgUDSO*RN0ffQz-%wPMGJb2I!cvLytSdXta135b*)xAK&+rRB*>N{6*mjvTS) zvp&Z}x3l^*4f#~X6_fUah1qJJ896uw~{!1 z_uz3IAH5#RWS7tMp4+TZGsNJp@Zr;(tD`Tz_JP;k*062L|LYt6e}47ztp+XrlrGZLH zlw?ea$`BbceCu#O@B2Q__kMrC*S6i;?@pKVI?v0BeVMzSmHSSYBkpHxPuf#Qon4&l z6;2&GX>ad*>X?iBAajKlMXjWa7+Wkn6Mud=W5L%lr!^EJN4J!q%Z2k72+FTKEom0U z;TTHGa7;B)b(AlVnrciq7Af_NC4YT>%CQs4q5Ao>En%tpTP_}8gulDiAvT?$^faop z?Mts$Qq6`34{Bbmy>s;M>!gk2jz+PP=R?UKi>RVLib4L2+Q~PE&Hsom!h=r!@YmWU zkslc96A$m%h>kF{Ra;Z zFR$Bhw_aO`2j{hG*9=WfpU15-U1=0sR-Td~9(nPi?cu{LoSdAhj!kUaZ>$TtdspG- z&!0Oge0}=*M^;CK%B@hy{`w&{G&F1Rnl)=&NBhhILqdAqrszI8H+f%Y+~x4$z~5g= zYd(Ei_U6r-W33Ofb;eB@={Z)pyfm|GhmRbw8)&|3RpF~?lBj-udU|@dvrV?Sl+dze zRZUHN($dn(Yt{suKhI>ob7#!8YqE3c85!k&KNcQu3BGY-`8gk-#{2f$^pbdJF?F^D zCJcs4Z&UV8t3pTqfD0F5Vq%8d{%L4v9Q$0P(E89p;>@9f!or}!LbZnvA6l2rMMf^( z|K!}B-}-l_x^;c;Z*zH%|GsEl?p@W^wm;>$qP+am$EUt?uUHW^G~`MyxnaYGj3SkF>z+Mw z>rr;=W+dPlMkg4I)OhAEcu&T&qYhAy-h%p~nvUqW4e}A}HntsaeJZqOG$9poS zH#b!^-`!VmvUls#+S)7L4Ie)W9eNg7_0Zw{K}W~E&euXiFQ2c~pwY_T-rZNMeB_nT z&o8CLP2T(V?K?O2VYl4-Uth5v6Eou-1#Uh1UweCB4&2$D7Zt=QXos&{@E*UoTws8~ zun3nl`j~Ia{4825x~a*+%jZjp$MEa*9hJ|Y8%TwimAUmS{MK+Q+Vak>l;q^i)`Q*M z0sj7!)xLe4#s&Fxgbbc;CMdpG%YHp;cLl44h`g0beE5}^Csk; z`1|`ygsJunU$INa)t1L4C3Zc}F3L6fgoO5OKNhicGlS8saG->5=HGZc=h$_%<8)P3 zzJ0~cmi0QK)YSN3bYLJ$q_Emn>*AvgE7Uh^5SNuTI=F_Oy8ii94|*zx{OZ-5Po6ya zc;7yv?9GP{{L9y!c$*btar$>#Sd4@LeeGIaYN-9}pe>@buQ4s8^Du*v_YCJgE5Q5j z&t>HLFJ2f@{#UOGNSoe_oc!}$ci+B0&Sln5&MjkJxVW;nKAws4_V#9DXRk`$a)D)) z1l@ZBS#tijew-f6%*-qc7urn>bp^!9w)8xY?&|6~kI*KV8^W?^5wnckM_pZAa^0$zp`lw370e2c|Nc^QW%cf%uP=FV zD#?RqXJ>oj85b{EVryr&Kte)-oXS_P79;et_7y8WAC{tDQS}}@#=^ovWjzY=E(i!% z;Cc4!p_-7n)- zxs)s6WOISoR*f> zX<^6D$5;8~i)iVY!G%;)o{bn1oqnO?2eQI)<|z?l|HcPMbi6s2edETBst)g1 zKHS+I5)(s15+S=*cV)H2s#S{|92{P}c(M7&5$P4$zLE9uN)jq6wDrzyn{92oILGf~ zWU#JUwQ6E&%I?J_@vQxi@836x4`oB#>qiJEd}WW8-hMq0hnK@7V{dF+Tw{vvqD|)} zxT&GB7Mq^uVt#yy;h|Xz_y@Sew4RRi))#n>^_%ZB651WEZI9fpMH?_i>9LY2HWj`f zEBv&nWULb#C+CHzsHo1vIo~ISd-^`y5gZvANlr_aHFhK{sz&KRy~K$^JY_R2Nr1 z{qy7b++6udO&=ehiHV7W-(FqIzkgqD`~)L?gLB7|i{D<~sOPG~gNy$D{X1Z1b`ee< zo}ly9wY8MLThBAwm$6a-J85QmnK8BA3mc%60B?3k#oX-j zU#*3@CMHWC78cS(MK4B)ZVZpoWAI!Yq8Bs&y=a*8a(JU>5cjg-C>)SmIrA>@?`1N|2n3w>(`QN>JxAL&d z_t}|$3F>b2bxy64d283KsqU_g==HsgTuC?L5fKq_9rCH4_eOYgtD|vZ&nxkL7i<`A(onT?5w$<@s*hSLK{LEb8#GKgMbc}GW7#=Fl03qsD?j@u@p zxZ0q>Md6^vGy{qC>vy~A(9J!N2v4RsA3q*}%*|nv?mIdibgFXMVu`olu& z;`SEje*gOQAgYm7xp!gNJzN}c;fj7_)(8@xae^`vj&Mwi$FElY&qYo>$Cffib#S-9 zEwc9xlrHpFs2=}CzPd5xw=;Vcz?UG#N#-nxAy+u{tpqX8)+}QySrVxpR!Y%)ATQP z{`@Jg9&==(J3ua5<~ z)+;pJvnnO8XX{@S?rSYvO|6ubWyfamk_YFwqSQP-*b$w*^LAYxfC8zA=ff-z^J=)b zqD8hj>*mJzvFXV_thec@BY%H>S}UUA&Nh!$s$RY{a;3li`t6&vQv7re0RJ_M5-Y#a zK3Z9Mx!H~#6qTUiAs5Ugrl@|!(cyjOlIA=crRabEeie6g12B?Q=G9tyMhOA3kP=dN zUFq)O!Mf_5@r6ZPSH)VtJn<>*RApG0Ww{q_pkox(?#THTLZ+cR*F9{BUO9<;X?-UE)#_%9KREK52WwKdZTMsV6*)^CAa$18jVHv;4V^FBKmC}O zCL6bPR|VIKO_f<@X@7-kjCksGTOYA3u$yYF1g*gtE8pv#`-@{6yVeJ z-_I_{=ka7mdm5fUe_kJ#&K+|^?o&y<-GRx-$jGn9f1+d!PYfTb0-%1My}v-qqu=7| z_wUSeZ{O!kQxP-BT2hw^~_oQ_Dx=GAD$USYRyow&OHQV+?EwV^1)Esz%B`N8uE ze5Ux2Z+H`fLshSBci&qnF3z;M zQ8(uF>C*wc4p+Bck*lhyVWxm(S8-i5V)W-7jd6+qM2l(7ICd$ z=<5fgcBQjP{o8uSyFkl#+7lec%9SfOui%~SstI}IIhrY0uO z(2P@*!oDH~fP>z%MyuA=R-9&5>MJ0?-0Tbqd-~y{N9*esE?l@EuIy$(fr=cmlH&mj z3yW;G?hg(NcL9WWUE@mNiCM$0&@4fxf8`uQ+rZFo^pw)>0B$~SgbhG?>FrHS6gh8H zr+=Wdl9EwdJ?b~dCQdh(OsVxo&MC`v7IgIJ`TAATw427uE1|xGCL2(4rgq17y8}r# z1rZn053Q6Gg+1Ke-#+m<8)K$=6TQRr^)5>(JQy9#f;>Q2`DzcvW-(3g^rD#$=ik*F zxsL|Xo@ZC??aa(>G#FI))SWvuLRI~5s;Zc%l}0=!x3m=SP4mBogC=+8!oz}sn4>I~ zg8x~hT&w7?ur0Q>;#4w#bgG?&jFk4#(?R0qep1UfY%LniVfOgFfEiRp>WBnB8yy`V zztO#KrJR1yI}{_Y$DVvE=;k&k!*TJ0UrJXgzx=#&+-?TPf(l=uXg|N9xuAAtO3K>O zjd;ye(zBN&S%e_9c#Il)Tf@8k(S1M{5UYmEk8FuGrGB{R9;g5=pxUTv;D}o zae3SNyTP2i!1+sl(qY3$*9sIIz-h?O&*$b(dqv7S64s&LZI55Pdc^?L(=+gvs8w*= zvuBUvna_!#TX%l9D^DmX%wf*Z9_apL6&89~&#>TTe0&I~1*RPhyTabS-SO~PqmDv_ zYtvYLQs~Xy_X~8BN~*GY3Lm7$w!Dcw5Cd{%i(!H9zrRj=e0-El32TnxicOyW2-cd{ zua}Sw8M|3>uIsXVb6i|pEvq;^=vY%0jp_uJe&jdzq*FC-ykoW>R19xI<_WaSUwgY7 zZiO1|3FI3bd*W2+K(*%MAq1rG0}(W76HdxKUgbZ?d5cnF?5*OG?WsD9hEwkDm*e;3uI>Qx?2S37 zo+3uOvPfKE09i0D-m=_EOxt&pxw$zvH}^`xess4MpH%`rczK_sd*8frg}=Wko0(ES z^(}J0VGezJU)~B)Q3a(3Bx)<2mGf**oQTBXh~F!SPGP0u6=1WLFp`)uC1Hy(9+T^JW z!V+aDHGH#S!M!&#nRB1Nnnp=_JgtC`MJ*SGiNXY zlU42Gu3rzAFo>dLrgU{h2N!e4c=N1rPb(1|sBOAyDT-8`p1p9fkbi^Lzr|>d2y=*z zbFQssxc5h1#jFk*6VMX{fL7m+>^@Ln$2vRv&jtN*<Ps<4j( z%rbu%ZtrAo9ZD7pHMt;bDIz6rcixKJyLVYvd7qWi9-JB*Ae~V7x4ynm^m@z`IkL73 ze|(WAa7A%)5e=xCyZOhxM>~v-jLdG_Q|@nPT{ux;cVPGKc!dFm@UfpC3r0rJe6yf$ z1D$m>BoX;qRxMML{GxR(^Ja7N*eoFzy)O|SMzLQTNe=SiA|@AQN@Z#@m?3D9J2^1GOsO8ZB@e|OFdG;cq6{r=;#sv&w&-{JhAhl9MW3Tn^w<#AYB^l|)An+$<{|)xG zbe#KhvGuis_}l2Zu{!yZ6-IiGp;}X z@WJx;z4*(Q1HmOh!*YQn`MQhK>aIH6HShNS4RPAajK{5%NnDC4-vo_+L zx&xkIB{JYyZ;DAy~D1^1NcL2ot z_9lrl`Iu@Jp*1u$4}gUHTd!2{;*9z64>>`k`9HCeo--6EFd(%rtERe|McPYkd*6bc zBY%E@)&y26aOu!8zOI^WF)l=ZCvW33#t%5l#P|B(^rxe@(43W^IsY26weaCXZazMi zQ>RW^^6t$AjuT!YtV&UYXa*O|yX+5TvIJpu0u=&P1C&G4dn&>es7@h@S>=cy- z(QPBe*&jY!+0jwaR01Y<3wn&NFO+a_?QnBooCrT};cKyiE_VYPduVF(2Nf=CfPTF< zg?;t??kCf=abkP+?xoAiFGeCFtTumRZ1}B2K1Qr0q>vsoMc@@zIJcLvZ`-!b)@ycZ zKnV$*zG1^M;ENjQ6SqERo*n<~>gwtr7RLVS)hi3{T^o&J-#&EM2_b43P>sg<%c*&C8ZLqkKCRvF#T&#y$Q@|FFvoUl>s(1+bNwm;rw zP~k`XE=EQ&-e+!a1lSVU>W;qmC29LtTL>ap;PO_m^{v_SFgUqBPwX@dc0a* z{xZp)lc(Okdl$Rz#K)Bt70zEYUcPx_Qdd{UlMowf7#moe%d98Cr+VxyX_f)IDqr7N zzv1qKfYD!{1%U(>QGtPh2m9Wp$W{YOf;!etbz?A)e~oGP-p@r6>w^a$s($YnbnOT~4AlcAj@X!|`0O<*u6i{$0T z1?QO;*&&!I|BK7lcgLA((Gm@34gkay6&1Bjf zXM#hmf8h+eo<6O=f4>No3^4Vv#N*C0Q)(1M3+P(9y1LNj#$y{m&TfQkdGqsMeEis_ z`%*eOI?xI%+Reg3sjN!o%-a9d8E|q7;*Lex*I!M+-crga`RnDH&Zow31Ez)`;Of&P zKn8dXmX8xkYQBH~^1QumDt2*2^DtIk4-e9-b70#x&egkeJ#AB#^7-f^3k4PzuSWw| zzgCVGV{E^-S;|OydkEkSeIR_4VE7TxcTkNlqdEZ{yu zqoRVL^~A>V#2Dhgh_cEQ-H@*yT3T8YP!`m3Hg=;ARzCcKdz0r7MIA(WZ&*95ar5R) z<@M{2>hjRoQ`RU9Abg>YW=?y9NQI6fm|$4`8k*myPoF4%l|#?UJW`fYpcz59YIb&Y zRrzt!m)JWyNBR8wYg>0&cBBNily;!>w7N(C<;uh1xYvu|Nm9YGo=mX@-zx$l^CF1P ziQafAiL_JHe|Z6H^3RStBiMIb!+KjA;`z^~Hj|2yxXFu$B00{+#s-{r1C+VO%<35(+4ur!MDjIi zdafnKf})~Ja6t%Hbpwgu(tZA&2CY)|;R)3L&YqqNNM8vzZmiajqcv{JHm=v$(NtnR zlKt<~gQN8}!lU0H5z3ES-qP@JyvFH4y=`o)Lhg6%Z<1|aApOpD#flZ`Zrv<2DM@6bsP{kVOr8r+^@)7aS9@Ru_kT`yuJTn=P0ZyszfZ$#w> zfxV^C4J)zzRcK7!Uuaw}4t1E|hwdVU_mP+AW%%f>&oIXTFkethKByPZgrgUX(@I85nvQ2O?0QX&}A?Go|BZ45?{HJLiBG2 z8Bo@aYJ+0`>}eQp3M9cxhx7~#YM=-X4-eZrrmUiS?~~huN`sC>#b?SLDd6IgH@CF8 zz>`#ETik$30*#lQnn0=QbsOM!K&cj5?<|s1_jy9OpOsujDv&Y>o_=ouHN1tY;{dt-PW$>H#d2$xo2G-jy^GH z@J47~1z668hK7)|Gzs+O*x|$>8{bJiRQN*VPKf19GQ!K%LC8QQ+fi5GJJGcW8M5r&tEYgXLuAu|wldn^zk8<>vQ(5L2=$E{(;x}EY|5+o{K#WK0IdrR9t5zp zsF{UL|DZpEiba}Sd$~2?Qd}JK*|TSjlQb+-&L|;N81@k!l%cUP>4IafTw(QJd*g{Q zl3ocm0QF!2g^Z@`-nS!T#h(WaS~W=HGy#Fk{Ll4_^r?|Qe+vBOd|6moZ9AU$D2X(G zfJ5O+=^2ANyY2!dECLM$y)hNI+2vf~jrA^c@II(M)u1`ufOgH(N-iHhbcor-#RbAK zA^+{Qii>H2f+1QyQvhFA&nycw%m#J6$UkFSyd5M-ib4iMF5n|wQsPz*!aa*>xL-Od zJo7cqG#@U946*e}N?b@QdWhfQ_omviGoFle@89j^5x^{V5T{{!dAGXwLvyn}DkQ{N z4rtXv%a_-nkpkExk~fSjmu}vST4j2ZG~;=bZq0TLYo%=T&mSwkN(oU2@kkF8MlCz?}UR!&#?(P`lN-rb~SYQa2_J>H;iFPwE zCB^o!h_!biLOlXCfL+K2qpZn!y*4#A4g_UqXJ_{|-&VKLE!2=1_q23V$CorX zhuFBd{BE=RHCdt$ICt(`zVD1TrT66mT|$CL8{%GAPG&U3M8p7P#}|7(w8_B4B&zL~ z)cW;;pl(hU3wexUy+NjmhK7fCuieB*cXix}BMx@??SrGHo4iNasJHhHY=i-6cUJZ- zFiM?2euUv-l#KAqL4#qx6gm5!sV5B}1wN zemnJKTw-G6Qc;agsNKiVoA#+Q(zi6-Ll^^lrJ$xgIy1O}N=6=KTe2i*UL>nKHU9em z`rIzi^>A~H;p&TpRSjM5&q)~Zl$DhYA!ncXQeyd{Z!zpc#5K}ecZC#7^JmvqrG^_R z+{q^DAyDvqhuZeUXE`~CuCDo=hwI#?MjalybXY4k!DN*0^m*MC0zJaa0s;aqUB52Z zptTKZ4rp0qE)E0;uV_%HYUo~p0qQLvB1r#T&fEQPEWjfNBPEM(+_=wGqxO;{d&SJ( zLzWm>=2Sq%z^3c|zT){j4O*#E7;rXjo4G4~x zbVfKR(&}BGWszAS$v48NU>-CD0SWjkTOded-crtZ#$UE{T zQC5S4=0Fv?>`{_M(gs$_aMs=ni3Rd6sUy$;Su)R-qtP(FxoH`SOI*u`+&#P%vs0@V zE)|hc-t&od(R`B;8Wxt#E%BF|#;n09@Ag@nzuQ&mu)~%DmYlR z;IXpbP$yHSNm4jYqy$PKG`4`9T1s^K0)Td4)vKHy3JMCI-rjU^@hwiA9?4lj4q#_o zPn~+7a1@k?^=(`q!nYb^Ku~((Shj4Hi;jDg&_HZUK*54ax6iR0Vl@tE=dWK&z_4!l z;SZgGhzZE)IzY(T#<31wum zQj>P&+B1QHTG-~okPWZ)&n=+<3W#|QchS||ZLau!|IwpICFJBdK)O6fe!F$t!MQP& z6)ubmOw0?9?cZ_(Xb@ya%9+9TiQlDz^IIVZv*NKYC2A;&!4MY0qjVXLhCLBuc0ic5 zz&6oXdZ4|l-ln^E3!+5$KX|YfDU?V%K0Y&Nw2pxHR^0!{9~?e0EP~{GQCH{fT#6!O z3z>|l^QzwTl*^a-+<&(%1KkmL`}S=dWCln-oAM_B?|5XWzD+tBiADCzQ(2*m-Q2flbiB|_chzk%W=Zm9~jjw~Y z6B_e#BQIACjg9HSDR9NBPEHDy6Rn{x4)inkKd{Xufn@9fm;CXeLmW9xN96VwSm#1D zgNN+ngQHwXKY@O;lLkMYgFOty!%zMF6@h*zXSz?dj)$K=2tA$<)=H0PBZzJDlAk|M zAW5tMYg3IhLVl)ZZW}Q+w-sHfr>8m+wOdy;E8&1aIor42ii%naBtkq5DNwt~hC;Bo z=jPK`?}!yhSnsj|DRxJ>w+AXg=;hyp8H5<%`nzp|)!x1H`xQ_-wGHxS52!ODbKJA3 zh{7F-OGq$dbBR%E?_Oc75;_hR)aZnSgvz!y5ipoUj6y?W2B&D_?UZ*wrU3~FLfFPX z4`AuD1=3OXo844hUCl7SLsZ!%1;$9Sqw?!!Y`v0?L^FRwirU&@z|_wYR1P83Neank z5*U!Q*tJUlH9idGkZ=GbbIE=IUO{`u1%68y8_O>m5^9n7EsEFBF$K^DIh;t=21YAW zIjY{gS;{MI><`z^M{9jXUJbtc!NZ475uwTs?rTkvj$+IYAkmS#Lbbfk#!2H_MaIc~M`_OKy{IU$ap!F@vh3zeP;2z=AXX`1-Muq!kDFuSJ_djuih> zyCe$}91CcYJMQjP%iUYJ6|qgvDDnBX4&IFjfT|RH9^VxcZo6K{d;`ugA!NxhLJcNc znr;CJv${HnQ^oEn8>F=e{7f!bVIciJq!woMW%AZ#LSQ!L@ApGz)rH1KZiimo(zbEu zqnnG%HydT(VV5c@Dv}T;S~^*TcccIVtLYdTvZ3pmzt<{f<@9%O^g@Cfnz99L zHor!-?{Axu#`PT7GXh`mJS?y}JIaEZ#CF%N`ZwZV%>J2PrtTotZ6|gj9 zVX(}jkXz=zbld+MY-Wi-sl0gd+pA@dN=gV2LZQwe`^+)^-%#Tz4F*4X5dDJU;^#0) zsz7Q+6Y-yG0(XnRG?st(B~PPSC@yH9r1}o@V*yA8hMryu1oHV!u>fk;aPRXcw3J?i z067pmaO+-_{O?eWzqPe2jKR1rrL4?N*kaHb#IJyWmStZp^v)232^$B84lG`orneMH zoL5i&4+wUdEMg-uilQbS0htre?_>V8LR>M*V@FxK_ z6XfxO$P4rL2-Q6q0ZPt2pr15(9PZMp9YMspjGn#<(k3{c`L8!dF39&Db3|{4u3MMX z$(2R9JA>c}1g#o#<3j#a^9wN1zS)(K8VND4OvS3 z&uFOLwzL?)#QUEShGX_ekES8hCa4`32wp0h^RQ<~*uY|`WGaUBx#kxX+BD2Sr6!iT6s=Yvk+W z8JJ>Bk;!i~p_F+2!(laqXVTo!F{ipAB(&){$O|cO*FPYSZ{4^s&y7(>O!5>I+bzb% zi$N=piW@XIhjVl6Lk>UOM-+u}{0JgFXR)T|&`M%foE#(mQTw{fyMNEYfIZQ9fr~hx zVZ$fZBDbzELnlHEes8#CU}cqH9$j->BxYoYX(ye}XHQd(C1;vJ^sc(u8>$WqKnqNI zczbKWW@Yo}E(+fDbxv{>PvBKJK5nzgc^ZVqgp@wxK0-zS(9qKR49&VH^l}I$BEo~+ z0aVl!ZJtEJl_uLu#wKFocbc2KqNc|?Z***u@$!Pa?D=I$KCv4H2M5Da={KItNLK-D zEdV8Bd~FRYM8+Nc1)dir%$LGaKWBrUi&%h?las%%IB6aTD^N0mVq^f-q0Id=(3md3 zCUpsY3ozZEjL%2x?QPL+5-^E1$az%BNT*?XMj84Ve8y!(GQNUk&uFrXB0N%gpxz+j z{0@TUKu=&cF^fvw+Y7oyLP=>b=<_mR;c7HczB4)dKBC`Z?A_aXd|#sP)Q?pYlap1@ z)#1!U%zay343MP(+7dR%>AGJCC?8ODfCDuk%Tt?rLh*$T@+r~9JlR>8B`_qsKDbx@ zk`9;zvXS9NvIyts+jSZTNI`9H02+nM*RD-gJDvUeQ&!EXb@a;fBxT!xuW*6(e*eBL zR?_Iyw^uP>i|8N@w2FTrkR?G-7@?P6uo4c*8HI+}P>V+LV~i2~K#tmGGi%E02$fIS=z;XN!$rEeKZdGFF@L@J^-|4MiIL6u7hR z1AA`+8jr&X;45lCHm$#FG&MD44yc?x4tttB)1{>=Hp!rq+umLTr(MG@*oybWBE^k@ z5{O^X@c#YIHS5>M@B0w3K|^CJs9A>8{ zw{Fz;vgtu4Ts4Lc4NG44@?}ha^WD`49=UGu^@Azf+|V#o(kRwq$Bvaqzef0`aCOVn zlT}weQg=^)Ha>`k1A4u&?Z2NuBG+-cD41h>e%rzVvMUA6723z(Terl}EKn5cLKOn9 z_ZLncY0MXksB=S@Xx|on2E!!8-FLUY7Kbq$PF}dL$Ac<%mz5W-Q{rV@*MUAkGH%Xaiv=S4L9F59(IOk@HqT*aZ@jy2{m;+ErYftpSuCAUFdpUj zpP*9iL^$OVaXR4J- zK<=kPXL;`5})70i_ZL`^ZFZ_%7>~M`T6>;Nw`wlkzffwcZ)h=coP+ zR;YLm9h~$){w5P(zgWWRXca+W)-}l2=nkvH`Bz(iynSCD9FQ#6zSFSN5XF+pKQm|z z1}dxRD_yE0Yim>jseDa$cAL(oo{hnQO~&nDseOKH;#^aeuqIkhl-BBbyWJ6_IYfb) zONJ3QVeQc<^S?H@weDxZxZ#%rAn0RY)rReklCew>6cFe}fhR#;?|YKbYrNZ?vK#|7 z1e%Vtk1(%oLC*v|2z4jw;X_q;a#Ap7p}cl2=HY0hmjd63diC+srz%X_fXPcWy}p3gDa^&a90(T+C;SFR4!1c~U}OY+_v0oO6Gl!{twy+Wxs;^j%1xU@2xh?m2xQjD zH*p3{S!T=tIl7RqVM|{OV*7E%`6g4;a?pc0-;W>VqnpBS zbNGF_+{H+5Cy$SjscMM+Zf@VzvDw)_P94he8>(8AC$i)S zIC&mQcFmfRyKf>wo9dBzGL)W7=yd&4h(6v1NmP=0hqkuY10tX~wtK5n{H04Pmn>Vu zNRc>8yAsdQa&!i#H9^^S0W4D&p|BoA6WuWONo~y<9UKMaa}%zwZmj3pc={)C$_^o4 zb|DlzCx*mRya2xfOLU_ z>GhgQ|8FuOnFw7oh(2Qx>`3y3Z(3T$ADiu?k}-4B2i-K=!$spp2TpLz)vLi!Kwb_= z8lm?TRQBj^il4O}esw|V#`#O3s-*M<05|ub;pF(@;^LiUdVO>X_M`@rLq_SsOT-{E^QP`d=*^jq!1 zoJ^eWzhCQL!V!VA?$9F;{|i(ZBB^Cv#tXT^L`M!U<~WF~kAE&||} z=l7ns*aou;D*gf+n~pQWdy?U503%ag1l_r_8sl!5JdRkCBtgr50u6a3 zW;Ibq&H8+C%8Ko3Igs7NF{lVmLJwH3cN~W!*l%uTx3eXos|l*c(p;HI$KX$2g}`O0 zb?bJaXnsC*_ah7d??CtxD9!dd9#gq@_dL))>F$0`@epKOEGcq#xL`7#>o#K^j6hGYEw;Pz-wiyDrSqql)lR|Q)HN^=0W?%MfX9q*c`~^WwNp;}ME5Pf z*)Vu3NwFKzAe0B@s&K1336a)E0jLOJO}M(!(@vy)syhJ<|B?5Y96X46V9<^k7AP9= z5VnboWW-e<58A?X3F0ic&2+mc%pL%chu)R0To*UkW5Y(g|3qtm>Wr>@=~FAir>jA!YXv@r0&EGFheksq`__5@Pbm zu}>qNCq_k1oH)TEjcfmu4>&9Tzq|ndo0!Pne`YlXeEI*6j`%=?mp!w&C)Wn~2m}*& zawjJzg887uSPo!Nm{_Nib^!RF5|syRPZ=nx0V6n(C9l%Lyo%>&r-cD5PQ+*m-!A4%`Dr&1Mi*m{3+ik8XAi z2m#gsb`=$sV;}QV(E0Mmwt8H^hAxK7QA)5MNm(6JB>IB=6qy73*-;?|3XKYvevAZO z1?h)nRhnQn9FNetmS}5hV=C5q{-!ZhU%S5J9J7*=k{7jzE@uPj44G8GXKFOYz{t(r z{VAwaTg)Y>@0o;>uZPe;R>y?cPh9`wBeyhi!(cM3o}AkNX(SY&jIf3l(pbR@FjQTY z-$U2nFbhgw_vIi|Tu#(@qHa~r@%O_HjyY&;xS%G#-|9j6VcpRbGJ_;fntO6tG9QX& zmJBg!%NsM&O%Quf0HRS%lK(^8Sjsq>Lz1RVNG-rf&yls*c0Ba0c;NZI5OJXHa z@k|w)FeizvyT<{u1{oG7)q?0y)X-3uE;ubQFaZH^jehu#xQq-N7+vr#C4`@_?;afF zLV-k~HFf7p<4F z`ycHfz6bb1C%KlbUAtCNQj&@2J%Hja3 z-mE))VX|Xxc9md1(l~+4os1kOSjmV%gX%;Ygxld8U!xqFBzDj-H6S#>5Hpk1*4_&E zo^M|-06H%$N+*5T;=a8m?h69ZW^@l|{oOF;h>=3fFkcz(Ym`uRY2Ux%{aKu?5y`FT z-Vpx6Fz}BfhjP4m{+Ulg|3CNl(^1f_d6#Nrc&`Xvk#9~)N&*STL=pCEcD!N^)=Mpd zfd1p3w6#4CX(mL_j9=>iro!f;%l|En=ysf2IGd4cxQJHEA;7H~%E}TMR=|383ya;3 zP;O4Mw@+iUj3TwBlB10RLs`wL0v2qMkO>!FyiQ)mj+N#34mj`KHw=o+CdBh|_Emp6 z>36Tb{=n(e-%1}`KHJcCDwx|`2|>yo#vtbHL7Bi83fadmY;fw%nbFwgC~%2Z_YboVst0nLyUfnc5{Hl7p+jB<;tXe_4==ne zE%`~`l9;%d`uN0WBlHCI+p(GmYGSj3H62YR;gB(_FdU`Vz7qOA&OaHNRY7#LyRnI< zTNAkuSakucmKZczhOc@dnk~Gi1LW0?tbKd-5RDGED2-y~>FG&P5OejN80K#(E2+lD z#sp~ch`47Pmx>2AZ38@32FZs3l87^WI$vX(B6HV11EF~y4H8ue)_Ti}=> zeKM#iT}hrUwA-pz(k^dRSwQ)2ZNnJ<%W-d_;Nxpt? z@@YCV%<%LG14uAam?T=MuAXp;KB5R{G|xB#HDds2C`y-2+@l!=iooFD>XsHkc&xfb zL%1K))g%T$EI&uv!9;<4aXopmJJIm(m-4fM=%lJq-ia#ThVeE>N5`^5F=wpu4>A$A z#@81#?+P~YHTKxON9QKjKsBD<5yRRS-oR^QESG|pvkG-veN`+Mk|!ZS{NvZwOe1|J z^2U_l#V5LGodP8!0=em{k$3~p-O(i_1Ie-lTks8_QOL^4SwMl&#R|EZNNOX+1b#+V z=uHT0x&jL!$r@Nz_%jpFi0H6oueG$a!~@!a0(f+GT#@V}>u)Dz{FJTj-bXjpi z|HYzit^2+(IuI_GQbr3e*CYj_J^Q_T_o`=rq+N}5`)j}pLw+UUffe(5E*^ME1Khz1 zIXSt$P(^W`%5tmd@NgbyRPmdKcqV)M`efQN?G6;VV;&q#sjIs?9K8$Y<9-#auH>yA zezSkXY%|yEy!hAEy0AtF`BT&t5EskTjmSC%^*&Gi`sDB+a=% zLr?rF?f@t008BMJ9}zql!=w+ZW|u(--PS2*LhH7)vYyKj z#XRx-r6~xBAcC3EMud!voSZ*DCeYU5YYhS8FdU^5`l@?x?kY)1wqh*gYn8C+JCFU2 z|2{+C=sPpEyRX0B4(O^Zja$bsNk&#y9L`oC)GG8*p3lV@(ryaP=yw#_W&u>yrDOas zY!VP0yby21co~OpA5Y26jRamMB*@&qjye1e7L^PYBclf)8K*sbcp0H^cxj8>40&M! zg?Ao603L~?k2B~rAUTR6le>7d4Xfybn73nww@`2aGxLwbwzzYMUQn}GG1OSMkwbh< z$i4z!tRRp-6NTSR&dI4;9iE(?&H~1ZEH-4}4)2BkpqMnmF@ouuL+}+{Oc9l1sgCv^=SK_)AdEff`xe%7*vSShlI|Ee6IXs3kbwe7?64Zr=Q`CIDvWE zV3*8J`i5Tr_xRiFs{0OjZ47ZkD4+PKi~+Oxd@`ttcL06-{P|ExcR`p7?$Ek2j}+E zS`3U$0N?;MJY#ye1*((E!Ac4WTPjE(vT|OxapQJi8bTu?dPIY`udU>-^~NFatfi=| z?Ch=xr6-%uo!ex*efu!740#U}xSMfX~S&DAZyHN#4zI zTee3@QSlktbf(RY5w&=o0K0;Ot*tF=($Z*-pfQwaXleuPfeR!r9{~6m#*~KI!Pb)1 za&kP*J6A_egCx+$4U=;UmNfc53yyB92V?rGOBBQhD>JO-P?^m%lU+`ncqLK25mgpx zg^6SYHD7LEM6E$yG|P!y*zuj2R-Z-0B&0drrB15+a-B0tE~IT4^?mR zvNbGVfxild8z!QqA{Y&{*8Ba>0=ct`K_o&pz|=-0idZ^Nyxj~ARkf3YB6(kfWSfbh zVb=Km=13J_P(wXV5`!PQt#(h21YmPaVvoT8fIfrhAAY9~Gy zEg}A6BrX&ZM*oh2St6Y1!yXUw7e(O&sY6^YZzk0Y1>ewVerg%I&q^FNv~o4z$g}d} zBrpgqqonj4P3L?d7xy=&Ey6Rf;}tlr*VCi8vun$(THe0xq;=iJ8_EJf-hjCfuw(W1 zIr`~Rrtg^JhqZ0gW%7>fu>TP^ zMlzs1cjLHbS7%t|J<*V%EG#XDLx*;u`_V(MhM^7$YY%ffMUg~w|Nfc+`=hU~2LaYU zIju?j^WZLOW;pJueJHE5ANz-a1}n)`t7_i7iE6d`8VPR@0O35P(@}A2K9VH<3kd+7 zK)UI~k;$&YcYg{uJ9YVhFk);aC=ggf2pK^ggfW4#eq&~RDqRx;Hz=P$PoDVR9Wy*s zp|SEw#qp^7fT<)T&V#xl=Ax>*TiAmcTBH{&dyoXiiqvK_pSTv|bG36SD~X53ap+{3J0_ z#Q8(0F-+rT7q<8Nj-jJoUwtR5v?Q?&89K~SU&7paJw!4-Sr8Ue)Vdcus!n7{f zRryQv($fQ>2Bm?iFT9F5t)~FSOcZ*}SWbB+kEF2Y@O-ngvo{Gy92HQqjzn6++gg&^ zx9Nm7tx-{_Lc`Vh`*&1$I0qJ@D|}ml^#lLc7)quwRo0u0l2(@30oxw0g~6=r*RPpY zdo)kOpIs_aK=$-CW%J_e7Oh`jytn=}UI-;1An?ewYXOxERSg;Ba#N!G&QpFB0~Z*t zi-bVx*cJ&nM#LO|5XZK3slK)K&5s@|Y~qa8a}Yu2?Se`+Z-68A%c?Bpy}oPLE>K*| zIH^RT#d2SH7L}Y&h7^q>Kq1S*AXRMAPzu}%-;e9xpL@t|K+AcG&0fAn&S5iv5$wB~ zcprzq?9R;j5}Y?iI(lpfz*&Al0VxfNk0NvLvyk-b2~RyWp!Mw|`;1SYUWX@D zhCB?jH4U^AYGyAfppGg)A7sV>BW)>JS)s@p!u+@tIJ)XzFklXar|bY~5BdxQI@LL5 zwl8v;48B98LwuQhzr?MR9t#*uCX=E01NIuGb??gk+}f(6r^o8=Niz~Qc|CK&#YL%L zED8V`92xN};$E`)Wkq4HvVlb`a6VNjfc7Cn251$4qTU??ih>CrLu?d9?2j;4m8Hr= z!kNYF>E-bV+JT|_7bG5H+#{Qa03r^2C?q_J{d#QT?-&q8u{fl_;jJxoXkRV{>?>Hh zIiaUCCx-)&vS*pzZ>Z+qU|JkMH*nwAzu=iD(vw!v#ZH-~DyVvU+oTL@)rX>CX&OG@rSDCxqlAu%nQ#Sk``Q^dT?l9KK8 z4bcAZ^3qED6t(G8Kf7kSsk0x(hg z_%L}-5#FAM_IC(x?6QMH0mqFQ{T-PJ!&^#iu@a=-h6?>(4X`R38sN%$PRRp!wb8s; z1c>MqdTAsrGQNP z<9`z*!LW7}+p~y*i>vD|!f28;M)z~Eiveo6e|%bh8RuBP2o6$4kFJUF9QuFCy?aqe3N@9L{%7PLAGEg*LKlv> zHbi05EFQyZBpJlI2er)i(`(C z-2gY|anLbE?PVb0()nMGNt8H9x8F%7VL@JfidTlRoH=u*%yT#ZUo5FF7w$m;dS|{p zDu8qaK=UT-a0m8Iu??7a-E&Eo-J1I%F%cTILUXH=ius%RdQNmC1dY_y*AuFM`#eT1 zi9HY#3Z#Y$Wy?0BkOf7I5&i|3lWB2jsZ6ZQoZcRHj7A5K2)gWLSn| zNJtqfMHwm$hD;ekL`BhrN|7NcMJZC2Sfr9BWga3?O2bk}AyV}H4r@K%_rBkA|MT3> zx>t2w=Xo6auK40Fpv$lucHI9zA-7F(F=z?Ii+kvR~vEraop# z;98@3^Y-yF1;ud9nnDqVBob;banNA!(_@KGUwY!Hr9SAF{Ng{kBtpG!R9qtyp9;4z z%Jk}$D^*)_%xA})(y10U9xDQ1AOw!wkfzN5W(MPT2o19YUxbkOn~Ak{Z5KEg{1X$a zB4+pSQUH(JL;BX#E=k|D6Da0ZPEKsm4>0@XSRw!pXF`zR&zpFf`x6QfodtTseP=K#S}SCYug@;%r}+Tdq*NHN9Kht?1UeClgzJy5E@rzy=! zfeWKOW=trc<2x{&CF;jcQh$LNGE#dEG#jM)) z#9=vu?Hf05cHrSuDDMsWHY6-(qC;R#cD8iR{tzDys{?JW5o!Yv^UBL^RQ+=s1! zq-mEno>u)*#wwZ;JJJL(?L()tyF9?G!M??q;D{H6$Nz#3;>X476nP!>_+D~lO{d>Z zVB5-e?$3V_ zqn&S4sD~8R=VfQ7eNH<-<1KO>8i23+JN=aKKwkX4d8jaAh2VVAn(Y3P8c=srrI9sTh-fG#e$*+_-?n{t`8C(+^{ZDPXR?xO5KWgP{j=EId=FC%=nPXS%QktH9Y*;~ z|JHyDvw(I)zLA#L0eFe%Gk2_sWB2;WC$AH!d;i!rL$wDzh*G_gxxh;j`CM7)$Iueh z8!cU1mL9=GOINZMyJ>CsZrftUy=3C|Y4_L-r6V;FYx;Sovj5uDEtsG0d^vw5f5Yex#g%+6N$zyZQOP@MS+!twh{0 zOunz=zzkhZRuLkD&j^VqjX{%rb~RE?Uw-`9yfpdR?74HDD2NqTOb;$9wkN+GJA3x* zr*xuJ{gpx=Z*SiS$MdnVIi!T9mrk9!_0Pv?w)Fbz+N>KpQcpwbT%cN*Zen54YfV|Y zJ`TD&>Rrk4YP3g(4k+s#+1ACNcFy?{J7-yG>E9j~Y45)&kF=980)8+-VW5DQPz;E^ zPBN9F&s?$tP2~MM--E+`cP~P}eJz6k@O=1H$wIbIVkr>Y?6_jm8kfvGQQ;n$yj{bf3kxN#So2BmdR zpFD98g{N|Y84vKX81%j91dY{^$Ng5>JN6i6E+NF`07%SD1fy1aJu?rZzUhhdnuO+=kLF zaIOVR1jE48+`OHH>LOs7%3s_8>T)H$t=bG5ZO*Mrh>Md*Lc_{_p0SN|DpRM&LAV<} z#p73}qyRaC$rc3Hk(;aM5SSiYKK6ThINn})yY;2KoE)sP1_<9g;pE^zA9?cd*hGN8 z+x%kyIf<};6b%KG?30IQpIcO7FXr-=>vW-3_gMdYtxtSnqT#Alai%fbu!36EW*_LM z(*msbmdfz!@r%jVKV3ADvf(4mP?J|dD92c4rk&lJPDzLOR8OHIVe095`t%^m5;wil z=`HmMr%!ug=VJ6;Ee$SD3e`^OBejqGM#Xte?K6Qri#f7xc_G4@aEeI3o9DQz zfx5ZS#S0l*WzWm+(!IOlk-Dexhd;Rz7gpHYXPrNPzBcVOt?F;&mDD**Xu5?-35Erj+9(` zMu0#08mg8XzwtIw=Jkbygoo$TgsT$FV%{~)7f&huK;y)}k#RTHg}+cA#l+N5_V=$rbu zoQV>u$=gr|8APM3n!wOglHmsQbxEMSo+(=En@LW{XEv|`hiO5nvp(@+8tHMkBnGEN^2VTaN)R$#U zX`e~8^rNUs6kX}*liO#exBY6_vF&t3X!MEV=R()(y8$J3kL-6B2IVe;x2EAV4pB>I1@2Zr(flX|7xc$=W!%$!nFS2(B6=L#o*#G~OTpdB?%|81eAqfc?M)d9RlO2zVG)`>?sTrOx79=sDSr%|V zg4-0jwyDQ&kn6Hd;~hSpo*b&y`AfUXZc%$+H%GKq5MG{?gV zq8SLv)aCwPodb0R|AhGobVdWl4*iZkd-lwS11HFi#PC&X)=Xcrq#x2P%v+{`zWMw6 zn_5_SV^2xfUcnbZ3nN^4ORw1o{2$M|Cr^69wA*8(=Indaxbz8=E!3t5_y!K7FTvJf zV3MnM#Nfrvo#RCNj6w;NQM9bSdkXH|6Rtn_Z7i&-+-=bJL>AaHjx}$f;ACac-j92c zNgytV9O7CpGivUuB@!Q<^78u#D|n)pu8OAg zVpVl@78x1=&|o5WHqEEuG||A@x;J#-M*q{Qp4CC2&im=3gmt;z`iVT}n-*;#t2A zZmzJx0fb_hDDVl5(>TD}QE7{o8n(Z9jSurDs?@WcroZCwrNWSycCG^iI*4i^pgCh{ zr0MVnP^rvfCLqwX4nlH5ePd6y z1SfE^-+vs}8z#?h85DZ$-`|NpKFu_Fp6?&x>hc{0`Ye0{D9E_t4F}b?iAJ9Jn9wGo zITX~FXiuR4NAmxMR0lt}T6w>Q#CflZp;-4IbmPJwgNjH%8=uIqpZG0LpFK-PdBIW> z9;Tq2__nL1OBdb&Ao8BMdb1r)+egUBm@QhAN0dOlB`dN%OCBhs!5_RqSIUv8g@Xb8 zM+wn5&4lnwbaXpGYf<+3{SjiMD2Q3)Gn3LE!-;!(N0#~p1c)s`Vs8;_gU{j+jC^*u zvsn8>nMcbsVJ6RRjAw1C64c07(07QAy3FX_1;zg{Vf=VIEWwoYcZ{J8{{8mCAuLtU zXz#(ANQ_GLx&=FoNttKVo+RH7iReMFBC)>)dIt9+&Ed`gp;5xPfx-K9>hIrgK`vJb zTla%vUCxx&PwjaN^URXx84dpL+>0;FpzqeBM?JulMFac$ogc>d5aojkjyo@vXYW1z zr;1)@NDA{soN&ZnamKSV1AwC!WAsp`CUtfuG5E;nw9DfDQ-Gu2m z6IJ?)vm;blFbwPvV~Df!@@3;e_0Rw5f$0HWMtTR$41-Y&MH1ZlGzgh^^akrjdbP3S-&+16_q&J%~dmx%r+BO>B;X6_MbiS7%<|5QuMu;1Yv z2K-bJ&dE-lI&~r@^%qY%My%P`h-{g0NbpO0wQRI}H2IKYf9FkKAe298U^qjRA#j8$ zB|KSGC+F0hK&BYbK%-K_zfrGyGZDB&wjqv-e!W*d-6OARA59%-zGHs^nUM<9gp-Mh z+T!6e>=YjMzYjnIXp5LxfiI1T&~6^|wBvN&Ug92c0{AlRgwURj*pB}zR)+olnW*@9 z;eq4+`QEtgFp)WG`yLT(%$fhHISBL~^9q6!a#Mlo8BRmxKafr=n+r^(Im+MP)xa?m z){QP8rLc2hfCBG!7DDpvc_9-}OdDc4A$(a;M*NQHrxO#!?jcd0>!NVr`E?dDPCIia6hsE-(g6+L@3&#d7t{T>1Kg8qGqmSLoc9b5u@`bz$SwM z*o{?e)yh6bD&iqarM>L!uyW{`;N& zuZgLq0Z&xc7}*wtn6s(j+r<7H=%^I3`)D{t$_RE4{s-_U5$+0aEAatEG?c!Q^K=?D zkJzjx2GOpkXEIh$bV`JSZ8xJ_sg%iyk$KhaKnqI^Bet2yKK z^cF0c)0Otk_rQT1>aJj*2XVgV-6LKL7T}GoIHQ#wx*zZ6qpJR z{~=_{-{(%q@~E!!_-A&%>C&qWEqGP67k13s%8#@$?GoIMa>S6hJ-p>AtL}&EiF~lz zNh)u!@U*uToL9iT0?QnW+GFMb6`4}Q=Ujf9+XxK9+7swkpK7-)b08gYGI{}I? z+9x9=9!=0p_Q^?8DnaKoShh@=IgeP5=9cF?1~5uEje^+;;U`fbikeg+x>cw(F7u3} zgPoWiOr;Hi!k(ok8$42c(*yf-_fY}}ha#1g0e1=t_JDnGm&`sdN&*OEpM%8J)%D;z zX_b`sbPZye8hP@~KmTxtf(O-dy2kY7+tK-n#Y%|E&bai5N* zZU`&ofC@JoGm!7Zfe@jQiP>HNFD|#5FV&LK8O%I#Mf_$LA)aj1!uFz)a2Oj-gby5` z-xrj8=i5<){k7SK-g0hFuWqo#`B{d431+U*@3S);mZ=DseCap*D)vB~UwXecIw@s- zT?J#O4a+{l(x%EY9~`Udou2^8A~crpR+DzM@)HM6`nqd~NAoHzUZ)y`BKdI+gBjsX zNnTIiTwHt19@gD1>K7H}RsT^WeUiv}x6$ujnDyOvOLWgUGAiaQ6J?-hBTO^}%Yf&M z3YgYVmkK~sk89Vy?|1YOKBxF3ZP~J=udX;iV%H~R5kn3T#VP%;7X*HL2DtT;9?y#D zEbd2ql=Nk0nc0G$LS^Ol;jPGoJpX>+I&;2g{5Xb8(eQuZA`zW74kJGrqchVr6g<>|AY)$eQk z(IZE2-t%%8Wo|2iUd%z5-J(_DeenrSbIAm`LD@t^2w^fLNYDrd6n1K(6c^K&&_FrW zI&m)8_zF-wNJrB)j#kiwl*tr;69XcamA`$#Nb_uhkI+2W0rZr^@{0g%h!E3ljMZm7=Tiz zdLw?%nX_j*QVY;rw8ulm*r?0%U_YVlLy^#hYfg7qf#!fTm z{a6kkL=Md+bYN1vbg&uzxay4kFxYC&b&6A%x%J`G1Kx7SHvejM1G{@eI}asms-fW@ zLIqjg!1>{xwc9@7F$J7j(|8b(J@m}NXr;+01|$Y-lyi1prB8f!5%=>?GKZl?6v9sl zyA|YFVlhH{2`v+{vQRQ7?D^Xn=IE8}U4cWL0*34%8{JK8ng{ zrm>)z%@8H*w)$LzAi@J)F#JJbw`n(a6Q|LUPcM&*;>Z0e81?u`?wM(1$WN^S=@DaH zj{DRF;|nC>ZjaL8H8Y#J^5bclBh?bM!MZmVe6ZKZo;LFQ(TOlrEcMzU{^fP>&`5Oi zZ=QOB6&b0s4|l6;s6U0!1FnBiWaJ^D8@W`41;Ir=HL&(kfSrztlG4}LCyhV)5;RZ* zIN!T`203xjK%sX`d5)Zxue09MB4mN3r4PJI&SiTla%etc&4bWUO!D~EpI1aRw+G-7 za?WX15zvc8fi@uAs8WuUQ*{83#pcu>HX@JYEma#%k6Azhg0K7SRJ%na3ht0_S`?{4 zSTnI<3k*llaIq*+Z#Ayu5+wyQ-s2j-;qhjTTW4n0gO}tz

i(QA0E5BD6-a!j*n? zOYKt`pye49iUNc{OVF@;f_MIvw6saYr9q=c$x}Mflg54Cj7|He97WqPcGs^bz^%n| zP1vXknjrxc*mVX&xtq_Q@jgLE1d=CQAem@9BDkZk7&~>7fvk zc7ns18fKja6ax<#BK=2z`OmnwpMJn!(e}!jO!9%Hp&=!lQH7cEG%6 z5)v=KfU6@M13TV%db`q zwGImlD`&_f7SlD*N@p}2isetgT=i4;Sa;|_BgzM*$ zlD(6EeRlvt74d*f-u3Gy8I}H=lI36r-wEGx0|y>rhCXh%*!K%;CERYuk9rPCNpyuo zP5C>AQOp9d1D-#Bp2zza=LK9hiYGMiOQ-m> zwEpC9VL5rQ|Aaj_dR34;t{i#t=#du^iu9jNOQ>6!*bsiA{`#wz5PXS^+nmOXROy8r zT6$gKXYbzHkSA7(lI@}r@2(8Vr120}gYiioK{_}n=u>XMD~4G1Y;+ADvsxYjdA`nO z2XnKrvnKuz7r@v4Cf++j(#EL8S>Zmxg^R!c;aNcoG5ON7gm3SHvuV`5A-cNBMcogA zY6~ur_Ts;!i3?#bQtAF~UUb<&6H7W`)%rNU4fOyn-|Icv0ua+Ieqw@Yl`z!f3+%sg z#dYt1YNtRIaymLF0VqI`${DbTAi>gl;n)R|pL}Z*)Mo7G z&u@1CB^8Rc{h_Yg*da!R0Y2NCTe_WFe!)ppCm`H*EKd-;_Whv;yzij?IHe0MbcG!n zE#IF^?t3mlRS!?a`RN>9_*z0a;)Jsc&r+$4V(8q2lx^lcL*Hm7O-?uf37*bfd`Y0@ zm~44XRp`_gM%$Dcga^w3V(o}pVnwBViOsHv@f-KBjBupbVC)WxLnnLTk;gcBgW9C? z=lyeXb5oc~JwLB08Ohx2Parellyos;!(FZF7!&GMBLe-N65fO!LDa(?Or5K zI$Ti}>73viUszav{_NRYx-4rdO(JupvSkHDOEFknF$exwNQn7`=TlZa93%#drMl|I zAN{|QqAtNeT>AdNf`toLhzCXtPkVcFA${BuRJsc&e+pl7ezpSlmNuaO4ULGn$7Qov zlf9BOY(B+&nUz&O9Yi=W#_HGn$<5xe=gxgTI7@o@h)z7m!M00c0KG1AY)sZZoYvdX z(UE;S)zA8_m1K78KHx4DvD>Ur>Ay9L&>OrUBCSy#z^1JJH#Swt)^B$W2@A`CB6N(N z?ZqRp>ggaJ8RECQ1%Q!4&CzITSqV-0Jzp~I%rg_H`n;v+7j@)Ud#0jkXL>|GgmHEo zYn3Gl8dp+NS5SZ_0-A0!Tu+D$2V)-%JG*2Yk^XK@jt{viU|V)~RmGegC=dJTZC!g| z@&y7_>7!B;AR3y`t1s$^IgZS%`Q-*SW|o#Y;_Jg$`SkhxxpR4cu79QRL`MxKmL2b@ zM~i+XUcHafcSE+c9GJZGO4aR`FOO5~e>ynSl8gO<^q?$+>aV+<;75W1I89THoPy?9_p1#fL(5jv-P$1#6_G*#Ev z+pgIYOf`~x?b`U#hT6Gj1HRIsCr?(V?&+Pm0kcu`&?c0>$s^JIfr@YvOl4HL%+a(9|T57n!9VH6VXtmqT zL!ptuMrx@e&doWN1;5QLFJbgCouaGjN^-@JKzRe1^vckn-ErKw#Y68wTDZ!ui@t=o zLv5?!e3YRpNYEwBeXDw)o{Szm!;7f2-Om^w0 zZ_e3)>D>#zr4T8v%$fhi))uX!{m^4H0meVa^-*c8cxLdL=Uu(BPh1i$qxg!x2QDqR zH7|ev?D_K*TLvxFKaMv=q2BRV{QoPV2iv#o5MFvWlbp_5m9f*$DoSkN_0hH%$C9Ik zmps0`-j+7Fhw3*1LC%WR&iKY<-G4}@HFT>&HNe*sl^q79PjEZB$2Jh3$e}<3shC_a zFI^13e#teLC@USv2nA@nw$IwBb4;`7a7ak@@V-C*v8ID-lVl-Ow!BFJ8ZQl&4qgJm zR@lh&>}QsN19QFAQs&huVA!%P*~sj|LPI|toZ&l%F=D`rJ0(a`9F^ zLb3QLdJA<%nTd6{^WSHmC20<;^!&0I64sA5nxEa89?Y z^kzqy%QLGJUh_HC%QIL~PJ@^q#t^UEG@k1rasZ^!DnNMqS^A4EEY8uBS24dpfWH@^ zw^{g@0gRugMRgS8Z*mm?6HZF-7NEY(VXOe(-JG@>JhD>GNcV zZ2b_3r$=eBl7qQTVjJC;{r*$&hw8r4Hs%aJ`4_Vr@zZYNr-2)?9x!$6d8O=T4%FbG z?}u@5`i>b?IhOKl=)x|DZR*no2lo|`7K@ea(lcHA{mH!gX3h_UC)q!q?%liBZB~f0 z;s~2w7azu=Vu$`)$O9OqqoHB+{inmKRYtSEmQoyrvU5zfWi9k0aq=voh^V!?YYZE9 znb})uaDKn1{oR@J;by;l>1QOSAF<_pABR=jL*IqUt*jo;nmn2G#(PlShxlHc%89ZaU+U`ssN8L^!Bfn7&Opw(8KJ|&*8 z1@0o}3)HJ#n#qh z!5XOL@6|Nk5i?44D7Baj(ocEP=Hos0h}|cp$w=%4?E#sil7moC;2G#g*#N>c8cBy3 zmw|&wNq)6{p3jWt)MhP%?_$ph6G+qFJJRuPVKF+y-S`C5i-M@YwfODsBo?*P;~qFZ zy>@01+l(;&pb5D}t3P3Ahz=aWaDG-IYzd$YkFGKF&Od^1N&3t!m=4hfH&4N)-Gke; z^fx{qR3q7ge$wS2JJ(c zTVs*(KbjKBAbhGBI-l&>UHdl=a?&{U=ja!CIdfM!HnGpUngVUo=OaL2IXUzX=r z?ji(EG8;H%m7IEQj>Y8_bAKNoiJxIsUXZ*&<4}(w&S3MQaYsFAEy`>zujq;`^B;lx zf>K=HWJ;ZigEucWHpCd-?7xQny02cpjsl~Se5Y#cp`>KBqGi#sQ(rO46VH-(DIN>9 zB);6^&dLk_4m*BameYn^kW|n?Cw9a39Wd_Z+0QRI# zjlDA;kEV&+K6a6a1?R#j$~Q;rS)|!V-n4`_CGn)O5{*y0S%yaMb~aRW5JEcCBoZGF z;h89?IJZQlsAp(ChsG?2J0xY)^E>jSqxTMtyjAN6a(r7|}1Xn%zypD#qn#TGQ4+4*PCb|iOwd}dxAOkUQN>9GUlOTcdPBCAc(Ntr3}2_+EQ?<`I94$k z`QF+*nyB`P(r8rVt;E`_+qWOV9HxD4FZp*s7`$c)?GChuqqbXF^~mmv@cOs5O!Vl8 z_QI}&#S}N{kpGUBCLK`7Al4ltcjBcBkNbZvX^Gn8--`ya08_c!??+zD?k`rlb&((j z%;8;}PD-+U^HT`k*mBPDgTWIf^ns)wtE{DYmd>o4-hU>e&1`#J$~iCKk|VW~Ei3wO zfI%|<=@KZ^e%C`dQ-YZ!@ub3n;cEMaHDr)`MnZVlJ%Pvnz`9hx9q80D`uFU);LY1} zgs`BZ%yWjzTt(}0DE`z$S1t8gW3?&CTVM{gn`vP5?#HL{_K_nx8Vy~jIK=E5c5Vz^ z1!Z2$41_5VT|{ z#zz;18_IxQT0?XEUM3jwBcA<~DZPA(TZ-~g^7zyn!eQtBW;u@&tw%G_XeVI|>{4H< z?={$5UuW@OLUqwx1%_KwTm(D=bSUuzhZ4eDw^Ukz97cg7*=T3*^`hMJKRR?Mr`D7R zCj`JZnSQ1n7GRABA-$dFmpO+~LSR_RO#EyoaMoWHtw13{CN5LB+v1ZFO zvN*anP(^HI)qXHzDTlmQ>6vCrSK-?Sy+atCPAY+JV28PwU?&JSRX#1|e3Q$p7z_%j z9E>#8vaK;LAkO!$u8zI;SU7T|>$L6YX>O)%lNR3H=Q|#acJ}rm8(PxjT_u7QB$~V$ z^B&J=1BUKi+rs%F6WZ?38}@8>ivd>A)#rNf?L^Rk4X4~QAg7DuG9b&u{$ZiakIyf> zP*4^CNb}&zYfu1%eRnY#O2GqTX$hb6Fz2f3?*|Bu781>S4;XMiNuU(%GuZ+dbmk|8 z=nE3*F&89g00_50Bn3)!)%S>Lc%hmIXn_<1eY@OsES)|lnVCU$8eCtP9;@h688vU+Im zy_2TxETT1W>uSSq1sf*X_0-2Y@0 z_|zSJikaPdTzJmtfd+x#YA=akJngix8n29A|NV4CedcQg&3xcdssE z$Wy=UIhrM&m+_$)4^O!^-*E%NR~#AQKmXU)dmGFhomN0W0!xudI2)T1jjyu`SwQB9 z8Bp1jXH*b)0-;TO-ioq%Jj)99b?LJQM6mkrjODlYEyrxgz1dzOh~Gf4>0_5TeOT>! zFXRS&OBq%34HqwqcD$drk$swz8p`J1gfs6=>MEiH;} zZKU>@e;W2qw?9&p z(PPFq^4SvkVUc$e0hNTnfDds=3@=ilQ94rak{biXI)Stcm@z$h{`|p}rMB=PtoR&c z>^{t=S8$FUDS#9Cv9+8&r|)z8Qpi|-4_qHVdbAuzg}+mW86UcyM!p=?sZ%E>@5NDK zdBz;3uTpmCQMIo8JV_@aWrsgqht!)MZId5#>N{?I;+Os=mmHU=29Jb*+|iR=YKLn* zj(Xv%+Bj|jFu=p|xEN$D4KgPs-+xb?MnSmtk@2NsPFn_p;QLnqb3T4ze*HTR!DxK>Q6Sq*Y{rAZUGccJZZd~d0gw*j7?Sk56eg9Dz$uX7_5h6J;633 zJ*#q~M1WfYbxH-3e9wpzy4BREi1>KT&y9@*uKGTFlw`)F4Fk0#;XJC%+qSKwt{m&A6k*GJ#iFA4uT z4n=iAi7nR7@yXIh5(`Hdj)piLl@(_p+N6f(ukPKO`;Uu75n-sg4t>=W-CU*3E-rRh ziJPxFin+ssg%Ufy^h#0EF_Dnf|KQW`uBSl032FNvy2~x&!}fqv zd)xz+Uqm4&*jZ=6F)#gNZR5D|YUSY{dxTb9%8qFB9+0-6ON4X`IC-l+8z)Y_Z3_b2*ES&k*Hie$nW8KJU#W z2aNJ{dc|b%RxtN!hsFZSK_L`9^9XOY5iK zxxR_?|7jgPiqzovNf70~XRm60ZfhyrE;pb|EC*e5OO3#Kq^#-7m&(IkK3A~VPgyy_ zz3}gl#_8!2FZXj@2kBp&A2CsZrb7Lrw4li_@9xp3k9BmOX1(wyfHWz2T)(RLe17Z& zN(_l7?mG%E7A{$GVnoQ7=FcnPZD{IryA|Tv+}@ST<}G{1{1Jmh!h%#>wPNgfc)5ie zKOwD1F?iOy51*CNOl#?)7bD&h?}V}pTv66Vobc0Fc1T+vL?*=e zg6X80B(u~0d8av|8fuH0zpk37r#GF+t>>0yKCS21qIVGt8zHN!cN<()!jo=JZSAWp z5yWwNkZ4k%dg*)?^N3xxoc5ILLzXtWxg+Uz5M(h)ZHT$4jk`oUjio8wG%hM7-8G)P zXK0;$vJyH8&qA! zoHyC65oo0?j4c}14vRcV_srxj%Cv20d?HPFl-ac75>*3S7R zv+o?7MvBBJLSg*zljtiCFtZlABQQSHlJicj%qGRbA`HMiDJt-c_QYb{f2e73pjG4t zDyOuN%nCoxN@ga_p#6JQYr&O>37b2TJAHnr421o|;OLDw{He!~J-`X@2kB-X#1Z4x zuqf&>u}RhQOW+j-w+H`(W4GYtFRd2SaO#xLD(qyPmzKTBI!L{aVD95w#$G&T_)a3&$)M9rwrklsZ$YyS96K+xEtr}ee8 z2}pxpmO|;!Xlxm%n~Et*M^DyaoOYQX5}MC-YcAV`iXk?Ail3o*oU@vO8FQ4&DJk}n za4YTMpVP#`?Jg47Y&KE#qfu+aQG-ewCcl5sogH}nd8k7FGw==)3#~TIJJTH)vCXRzP)G(oVTMy!;Lx_##vRnGQ6#-0zZ%w=XeVG`yfxX2%^p*;=FWd~4_4+IAuv4RhMv`aM|6j-9NQ zJx-}>;zc>sN6Rkei(rF2-vI;IDZMQz{fEEQ>Ki^l05`V80FDaCu1q8%gGsrF^R|8;uybw8YZJcq8kHA~KrT z?$Bdme}fnBW4~Lc!oWzOBESW7LuuNbDV<{fj+?phRr;kCtvJ+{weJJrd$4+N(blvj5frrZ8oODi_^2?>c?a&>t7n1FaFrZUR&e2QRu{A$*k zv)aLF4KZ?rg0&TFg15R@R8QC3C_QS$PwHv+B?`Iza3jQ4ziS)_E{WZS4G)IOVExh< zqEB&^MVb-zaAMIL8SfULz6)Jv|7TN#ng?aZ^!f9<1Nh|e#B8b`3>(*&bhWk2OD^iB z+vkpgR3YZ_r>C_STR$i$MqDbGxiLTE8{PQ%FL@*U@Hc1|bVPFvyTOEDi8g{o1D^9& zg|1w+N}4it47f+)be$uOE?rWvMtf^dE!#`WLy`&Q3$}1aOaR2zEn#sX-1~f*hy35A zdT-~l6u+vJ^Al{@kEulc5H(UtA2~b(35$+@vl!X%lX(PTp~B&~Un6acEY?#JPrK}L z&Hv#7FdjscpMKY2d)qI4Nw3xR*N{0uV(c_^@esXX!xFMLN}ozh$WkO!4H3<{&)#@e zrnnV^0Q@cN+Xc1OT{v$W>K(eZ z;-YijAUDtlPa`!!2gta{Y9C>|4eE3W2Bl~G(lhU}UOGu=}ZtRWI zBVa94k~gT`q)qwfS%RWu^)uP#RKc0B$=JOtX48QbHT@(<{c(_8;}&1h5)(axvi-g0 zGcG9`e)rHBRGdP4L%D|YzY6yK5gS@yGTvgJ5d}ru$SSwJd-e!`Y0RpJ5_%sN*@y+O z@Yk!{>$ibn?!G$^_@T}0q@vUOg89bA6?q!PF^{rBEW?aJOvnlWTgsMd#(JdtGV5v9 z+yitg)5E}vDVOknX`cy&*@_9PHI>nejJ97V>VNX;Zn1VC2L)xbt58<9k1=^GJ2%yT zfFu>>Y1C~M@9ujw?@n>*8WwE3dOfZ=#_oR>=wfbLL^55vVJA49xCc*)iWa`Cj7?GN zSM4?G_{l{}@nU>?SYPUsOav_$qc&&uWE{Whx@}v{hrVN-vy--M+GG#2YsQYG-mX3s z|6e1p=$~Cd6^92lft<&?m+)_-P?pt5Be`bhg>K1kd!h9y?3f{Zx0x1IE|E=1%+DyLZMFDEeUPCv|3!Pt z66-@P%w2Fn^~Vgsj`PCn(t14E@~0C1J1S{-73O`VDS?A8BtVRJBG2S{xS87QC_>$i zS61c&Uy9-14$s_ou~m~AvoUr0zAj?-6MT?PIA*mYH%=v92+u?9C8>#-18!C9_*~r; zjzJg5j-Vr91(SVMt?$e{{icI5d156j%gSrJ@lJ!3wCbW$LY0Y6!9KgtMR2M;=_Vwr zXFnA}v7Qh z;kOvf4roRuV)ajRQ)1z!DX0Ible&|%3T$e6pt4@7(YLk`5-9j;8LyZ7uzZ{N;^&GCEV=?EKvr%kAFHb=`zH$G zF`L3=KR{#?&hwPDQj$yTT?da)88)ml%n*&olRMuq*hs&EUh|a0R|oU!U`*YnzKj~W zWb~kMIAV)&1|eoY^TKE*Xi9t=K{kfPC}>`E-31$`Gbywb|^{6hCH4;lrImXM>c zx4c$6JEs7fe6C|?(ERBT(Y)rz)x|hZWDka94*gVEce`Gd|vkPWgDA$dw zP$ZiA&Bz5=rmz%5!i$jwFrVzu1+Rg2gY*kc9|oNp5sw|n)2F>)NC^J7l7srh0FygA1_&`W zA0kR5VpP$fWqkOCd*jM_z1v93Bt(bI%chtA~D#oc!WG(`VrW=oQ6^hIoEr3TYT?IMSK)09&I zAXUpj`{S0~_>-1)yW3d`NyQ1)wpZ6HqperivBF!eEn$g*^Q)fiLg(%oKL6RFX`@6X zN#7t;3SuqIKQ5usY07(PgzxUW`{Bcf%@Msc{zppm{mVO|U3k!%Wvyw<)0U$Y5xd!W zzwP1Pu~xGS!XiWBlAE6O-#1=`oaPfNmLIe1#)7^Xba&0VE7(Ai^Km@G>#C9t&+a|Y zG3#`Cq-HC(Zo>Mb2M!M)xa+D~bZwlyefN|Q1UZ>ktDc_^&PX5WH}-Vv>}D_x_Zz6f zeXc(^T3ItNJ2&@;hP9&O-RrI9Wn$c}>h0c@xr3A)FMoNUE*o2OBJc%MyFvn$rFJ?Rj*eLc-tE*pAGD;sis!Z0|iv#Oy&6aAT1i}r&} zCrk#NXfuCWUyV!Lr#vM3o0BUr2Quu8LII~yLZiAxVVk+XdPgh2)c9|!yoUW1I%?`AIJLSrYX4iE{(L^ zD4n8V4qnr|b$y1n_ZBA5|1p>;Jv&Ic^c@2ru;qAb(gmK`a%LWX-+ys1FwmRgSkNcJ zl(-GHvc|var}~=ur+g1c$^TYSIri05BU*z!2*GGYdKDbE`~yGFijwB8>Za;=2@9m8 zv!$yOk9j*TU%`3(6p!rNH}j%HbpogSjf<430_!9(`R+sYI32-rGP*mTf`M+csX!^;lL_rEm#IEIC6?dE)|UBb#t3(m4(^`xfea&QB$?PC}Cl?a3C#f!r(f6 z*{fDfNaB368BExPy*ZV&!jE*0Tn@2aN&*s&VbHo{`=AG1xwHXal}7DRtK;IQdE1#e zYaiXms~4ln@jIKe!4F3ApaJfV9_`sK#^J6b$hQx6^uk*|obbW5IC*Bwb8?I>@;V_9 zr~lVUIA^W_k;YvwLuQn>g(LU5=J1KiDLv0;a_IzVMDp&a8!(Q-5ZkbAjY-?g)+qLj zUOQvW`-lPeHns>v(c_o9$o&Jis`{dL8mWc5X>r>UDv-ph{Y? ziw$R=oV=?qr+qrjHcWx>K9+}iGU^5LpS1nc)aBCi-SE=#1L=``Pg-=7f=Qjrr#2$T zdb`QL7$I~7OQYT(PT#kh4e9Q2=f#Wg4TbxPsHr+p!&+T)S)OdtD$LYz2h!ZSw2@5h z0;A2oyVNn5DX8H z0d7<2Q-pPtz>XIa8+Ldrj=3MQy}40+{wc?s0T3n(_8DqjqZw4Fy-WZ-z~^5M$sL8O z)x|LX&@lHqi)3cQ-oe>$>9S?QJq*2Tua=FRi9(Mz!){Xu`$r_U&xA4If=E)>Ls41J zguKjv<{=a^B)gSvTMf1bYB;Zc&iS?HSqW2aqJU*$IAzkd^q=r*de`YXhPn>vC^ypj zXr!l{yuA5)^>rqKxrG0eYt&28s2#doZ~#(4N|u%ad87Q?i7HzU1FgZ$J`)*02H=Y$ zt<-gs_VNvYDd?a7+E8|Ces%_S987fGHds*X&;}f0=pFy6HT+fnHv7<+JbyVSjX7j( zYlon!qu1uoo0m)akyBPaK=9LieJD$98ID=qc1upVnFSpFiKo zI>a{6(DKl^#haOVzb6wqJrqt@H!-!T-^YiL95ijVl0(E0s4;!he_tj(Dr}gBf z8*u@ycWffF?mJl&#k7*H8>8kihu7Zds?HUjU1KP7B#|2Oc&8*_8HEF_bxV5;Ip4!v zp1D-TTQh?Hvc%*IPEkZ>Xp>XED?SIa6os$Yq9UAXB%uK|u5U6Nm#N8XhB^<98B;~| z_{~LepL@AXaqW>Dl_}kJa@wh_vcU+8TmF`XwIz-9U2w|gc`!pnxQj$eDL6lP3cA?uL5i|^F;s?`ri+fZWAs%PiJ zG9SsQPO{EIrDhd3vCu#)4xq+$`|uHh;Tx)Jrq_KDG9Cg3mFd6y7J`-S8x|2wHZP0Z zBj+?4+j8`r$vwBYHQqL;T=Y&`t2u^ZQ5n4fLYr;L1LrF+DVbaT{utU!I=W8;v_Xtg z%UTMmNA@1`)M&T)FDS^ps)ytcsj9K8`Dr5RHhRXUh)(3}l)0F?R@}ztH zM>@?v0%Ixy{QSx@oN?1#6uohyw?(f;+adVRw3}&u2{yqSvPs%wA&#M>7Ek<^aanJX zny2h+aEkxaz&LJ+y;coM=xN~ugJKQe;EW!_$-MrlKaAW69=zW9@wZs#`kJg1P6ldCH!=K-| z-l|wd_bfg#HWF`3#{98QPP2J$BcITxb4(D#7JuS{9SAhaY3KM0A=Z5>ZOa;MW*xVf zhias%MBTdCYPWhr8|>paE{$J>xjGau@hUN>3}6Z&#D9Es!AITDvriux2xh>w)0bZ{ z?^9ga2J6em(jlV~aT@BIh6(y9vzr@Zb)613Izf99e!PwMj{z_XS-0nw?}Z#R<4^Au z?vxH@Iz3juy|}o#CyjST6EbbaZe%$^p_aesm~mm$ZTb_ z;Ny%IY{n8k+cBy<1_f{bmX@4NNGRk?D!fehXggK*i!`d5w~^p^_QHjG1J4k7T2qlV z_(+LJ;~?+nU0hP~c|5R6z_;wpOwO`6O4tk1>r~|R{A=Y+ko(`T=erSekFQ!h5kYnH zvCe2=&Sy={Z^PL|AS061hXRfsJ(}6Wa*l{9YbF6vJ=(K2=2ggr2cJmw26H`IA5*ot zfT&s|EbNM&M5C#l(fJ`Pml0dbBu39qvZ~bL8r&acIx>CG0EP3VR1^*XRAPTX#zl^| z`?BK{R|*r3WX&tE#d{a2%4zZ(Q4_zH^Z6|WCUm1C!Y%~5uKOc$hqi5ABjqQjd?WIa z26+QOHciF1OJp>MZRw)5i-x1TME%0DIle)-6iXQ?e$=du*^;Z2duZSxSe#fC$fPJa zu5PC2X+9ZBzg1IwpH(a9RBmCd+x#gEC@68s)p=17pi+{YkS8%z1eJqL|Fm%wC zs)#=eRBb1k_v!pm=2T+$zGHlk>P}?%2<;N0QAKcDbbmC2p22d_OrF+$w^v0GBYSv{ z(H(Tm2-f%b*7gs{!V&Ww)GG%@eNe5%2+g)_hE-#Yx2Qs~n& z6B@OyTvo5a=dC~|^A^oy(lSvvv%462$Mq%-{mMCpUXih!G$g-G$f!`jx0j&eHd(6R zC8u&{s7<5Hu{7ws{l~jV`13V4?*YMf7AkWl=L@gZj>z;_*qBy~Pe{XWLJ>d)YquZjXcYFtlbmb|RBuFQw(`D(M3a(~MdOM_d01iIw z0RG&EW%ZiHNLzg73I&JHs=-DsNChR2=b2k;7RYNh^s-c^RIOC#!r3Mg47ak@Qql*uR`QAF%v#FW)lr(Xa;ufO}V+ z>cc|hb(`9*IQ`KCDh@qdRY#{Qk^eUB+3lgbf};!X-=9ex+W-PBdF&(Q=rl@3WdbV0 zGa!bDG$%;jAjAgiKa^<}W=q$AbK^ckRWInqrD<*pqGL;C%oL#CzEPMj6tM^{EX$i1 zhI9rq|IG(s+#&2zX!Q-ewZa(|2ya1h7$mwJ`uLzzr@ArTg|!<^V5eR>ndN^*!6za@ zdBo9OFpzy_-^qy`b!Q?Znc*j1ja_-af8Pw7b|QS>LMt&^nbfIMr$ymAE_#RdZhmlp z*#&;_^KahDVGJ~A@}u``*|>$2qr*X8xhj|ivnbkx1b_lCZO2#tbXyt8AVl1hSrjrI zd9eElyc$(Eqs+?;X!krX#^o_m@&n~ICe*o)KpvB$Zv6@bH&DF>Kf_( zmd%tNUEEv0_wd|u$JY3%jOKMAD*EHevu9%;>?kmN1VLJ1$1_GZMt&3HgPfmV?26T= zWa^wbT_R15w34tn-JA3XpO(bG43$l9IVwxY>IdMUwEsV|bBmJ| z2p#Vu#ythg(TI-net+QkY3S^HKGQ5dl{x^!!X8K)BryS(?j)HS8O<1cBCwmM@w`Qw z7~6_9?HSr_rKTOj`gI)q84{V;h{B{+j+qasMD$Kkx6Q3-(ZrI+dP@OF*cwF0nQx)w z5bM`%&09rr2U7pXL1S0^PJQO9jYYiA8;D9u8sTE$9eV2S-8sSmiG~uQ4ioX|f_?P= z)OO}!Ip=TRzw8kbEt;|vBC?dVB&0~PL`IFhWEqTYLX&@`@GlyvPaq?4|ps_dB50lh%iKcNF?9DsOG*M^M~b z^a&WJ>4f74g|d%;r@Ep$Q`|t#>>f)DQ>l?ah7GGLwCjbjg>CPd%yDus)^4P z9Y>0yFa2KAt?^^ulR7zv2F~A49_5OwXga~hHX{u04V$T$W2f-p(x#zyN$A>if?*^m zsHiyr*eZO8YhO|>pfQC7Q=k4vOiaw3D{EY-KaHbRMmCzCVWYz#Zz>Q_Xs4K#y2VRo zJ>5YWscws7@{+mWbuv$|zUnWJkCIq6>CthXj_vV3|H}m+`1t;EC}&KMnPO{%)KD6J z7bbjDg$!=xx@MFHIu4^qK@qYfa1)4>2(Gd9#~t}Odnj`X5$t8;(Zr$vTjvGAFYx%K z`;q!BcR|kJvq( ze*AGF)Ip!U!iRX1+41M5SD!z5@}w(~6_ZArbnlYoP5-~})Ae-p(`u=nf~}&ep-6BF z#_rrP@2&Y1BFo0W@w7ui4LXDQo$B z@~`JS;iJf%%i=5;!a{h-QKz8H;D7I_Pr9`$+X zxP7dWE>UT7*S6d%#8;a14|lvS>SZ{G`c--zJN^bQHT<1r?#%q;V6Z`I_zAc!X$J8@ zK~iQWVJKAf4zEQ8(-nkDM&V9Kq1(hxxjr8$s zemh@~pzke6>1Qp!4Vf|T?p+7{h0Z_CT)o%nigPB^O9tF-iA*#i0fgN8FbRt{e*4n;)7m8|JQYA>=JG}`)Y%y2Q`O@2xm zIe1LK>D{(HNes8t4|ZF*@)o^ASWk_+63SBS%4pn4AmVi(YubxF?wOtG;dZ6#l0J++ z6VyV%We{uVXl|X^*%edx9voSE1lp|0$+Q|p+rpa;t@SfBw6rqigcpwx%ZP-YDJ|jp zOFeP#(z&0PmS&JuDYxo9X63ic3AQ#!ePu!8x;c6_jrYbqdW?H>-c}#o5L0pmKUY^c zI0v#E^uyc_P{>HcqP_lNz?8Vfn9yOmGgzN5 z*jrUT?J>o1)2z)h+adOa~*_z*q`o zFLk<44NFL%c~j!TEG{Wo*}r-_Mu1%(k)7hTT8`*c;`;U=*$E1>t5*?v}o>Y&X#j2IzGfC=&wQG2Edz0xu9NQ9SnbZBFCV z3%F$)q4B4srFB4tlW~<6`z_ARIN4qx5=>I-&n>KN-IznSlgQ>nehFSBfw4(;k7wG0 zf(ikD*7Aoms)Oi#L8(5@F+16wRw-c#&^uK6B)9)mW33x`d2QJkU*sG`AnD8*)pqUL zQTEcCA1?F)&SA<|k^aHb$yCW3C`uGe-PK`wdy;b*jUYV<=$?RIP4bH7g+zLlDMrxt z=QFfqf1PD({YEqTWob=H*EZ8bjRjvdA=*Z>65@Q@F6J7XW<_kj8S}5KZh{5xG~}$^ zf%x3b@Dn+e%^`L$qNazT;rO>-na)0j(5Kd@91q*qtDEocs{XJa`THyAyF^)d{KnQ8 zP!)c>>m=gb{NNF)Lo&CT8MR$Dt2i_v9EzZGYwBYLE35$ugYVu(&-s;>uC6M{Aj{WE zF^vvKh_^>UkJ4JUw0pQtMOAg2t*uIwrB~3MJJZmpECzj|tE2yi6bLM1G5lYaEhp9( z!kz+h#Oe?5-EFWi_yr}+`p)Qe`J!ve6p0?_!eCPG+_~ce`vavm*?8Il+1sWttl{~e zEC!lViFOGe7*(nFxlK>HCRVoyg{syDKDwWC}D`on6t*zS^uUO4>5mRx$0* z^((oBFNxCmvBqgA?J=IwK&JJ|I1(jWl-X$7P=%3>54#pR(=*tFj9pV?QD-KC-!XUo z_}Z}Y469aS8T_l_o-3gumsbzwz$F7kMDV(9UdLud%dewB9`T*OogUBsz zPE32{?<(kR-?Mz;EGreG$#_FV#r9dPsv}mGVj{}%s-2xPO3*FE{-iO!(C63R1BqJG zkbZ~a*>uAGk#>mk?R|*j72QF&i(LpzO8(YiuADJaSuej-7R%@ixM>OnsDwmTR7__q zn7DNMc|x9rC`w5fajt$A%}5*t;cWDsYZ;b_h+yBn45tug0F8%uPaCWPU^Br+-1JUC zD*AhA#Zo~tNg$CehoROI!}^J0NoVKUSIjDeD?{<`;QU8)uL(ehU)CO!n06GY$Ivi>d@Yf9}cP)a?e(8f~W%z7}g`&0x^o*f&iv9ZY^5w-ulYmPD zj`JGU9#BzySb*y&x9rz#9y{?X-p&N{2a3Y1Ybt&pzf`)ecyh5dl1lKYa0apf;r=L?vU4 zdf#rn&;VX5av%gtQ=S| zUm)5*6ITu-Y1#7ilM`UYZ@`$D%_K8OnI5!%O}O93%Hj#ln>QD!eKHPo>GST6r|N)5 z$_h7{aVOQ=n{K4m9hMa+&y~K+!XnJLefbtn7i!u?)1ZJ3R=$#n!w1u` zct$mZ-6rq`k=PrWKaAA@jU9L+jzhH(2UmY%&!bP>N`i-?N0B8e>MHRcGu)6>0HT?Lcd$ zBR1h|_;ERpu_H2L_B1wgu}OHVa7<}V7pY1Dx(EUWmmTrRU_6>a(b*M#;WeU0g#v|M zSp>hf`#V_Wgdp-FggHWh8$f;PojTp{Kkr%hsWoXE8L($Ptb9vXS6AUT5es|#A*u%OM;suPn+ET} z6*~-&`_s2S04QJLl;UYd)ljBYzJHq3iJYhdc^y{x!70@)3XFX(DsynnY`AVHStY>S zJROEpj-4*fB4%x8SJ7OMLN_JTPvy^aspyR%Uy@uC$2r60XtVA}U{g9750%4&EoYVvbvQ+!DS>26y-|p{59Ph6&9i(O9r@Wq)v8=6WuWj~HBG-6<2uP!Kwx zzR<5KX*l?+zOUmZ28gJrhet`~Sc0j{92y_o+waYL7tr>jnc`NtM~B zQyr{>O$>kS;2VC4FbQZ*O{fnD{-v!%Dp~G;uv*8MxBQA*msU}(j>kyqCGU(%LGHj|aD-~dkK&ll~IEGap z+0sy#qdIR4c$z#ekhUl=*CWnw@tV49bDO1k=BFNrIu)2`RW8S!v5L1Zt;E7GkUL`_ z1B^Akd?Aci`0(R11FR35w4@)zY4&X30$s@)=@vHnzGJO>mBrpW1QV)oCz=#8w}T$o zaB#DjBb{ad@-{wtel@Gwv&LJ`JGN)IYx@hK3unBJaDBZZFn71Zp@yDq3fk^3ymV{f z6z$Z)RgYf}KY8Hh(X+YZwH9|a8J&AzyWXB#5jSEDPW{-o`s;Bf;J~Mii$MaQ} zpM9>~k`i5KnVR(Mk0k>uDoQ6GFm;3P^*CDX=R^W;+|=GB+l~>(zI*ul^7TX1)k9q- zxy_B*MD8YY2QrHXrhIw1^$}O3gYKb`(Yco3e86E_iZ1cu(n`lffx-(XuEw=)*X}qK zT!N`U60$_}CRl_CfgS6nlBwE`z1O(RM!~T!-bm4K(c;C=YmymqynvFf#g@l&=W


cBQmR+|U!%*MH zd^GhK#WD66wAVevC~+`5Vfe+B_$t-Ue}VQA%8rPbK3QbJKal)+PW9FF#|-^Q)oCt zlOzTJS`P?|?J441YPXYBH0I#i4&a8!)bz~aKRbOS#k+@g zH7ZOCElS_Moe04}A+aa9x4wxx*1V9AKzm9$VlLi-B zTlG=2A$d0;QkM!0M{w4Hb4I++uBmQwOE#?azB2@lJeA%=iU^zcU6Sb+Wo64PXu`6j zy#b_r2YJTmyUYK1{1^=vJIR#3)s=b4aNOG;E3z(;r_I~+wioT$Hzy6en$Cw03|o0H zL2I78lYdU~&5HV01HDZiF3-x!x=*^x>x{+amnRL|uysE1H9rzVZfH^SblueYIto7F z1LsEp$3L&B?cKj@!|)M^sERDrlOkJd>sXa(&f2wImM<@}=(O(2;FYO`CAEmg$KoSB zZjXA`Y7&^l#}((BuWqPw2X;fjp|IKhyHB6ZtseVl{PTQ5*riC{fkuFY=;-QcrvKZ` z#@f1PV_f`>rxVJL59(zXeskUah{D{tw~2A1mfZS!L+JASd?#(~R@X?TU`L438tonx zTj$q63M{Fuxj{K@FzEsfgff;Sq}|RfjjDpuIT@abM1=XmxB#aZ4y5?6(posvbH~&IG{=ayi!6JP)}mY;lnTc z&-;^lr>L|OyDq6~$mVk0VxD9k=@%~d2;mL9kpoeXxvaZJb39GfQuXun@(K(HxJJtu z>TymrleN{=jnY=+weN0FOY|Q>;E1smo(t^MO}CNzMs`miOL?L%L_GeBw6*D2z$G{1>Yx}vgP*kxI!dvf z@AHo;BM`G8`xKjk2$s}v2~C%;H^!zKEjSpz!%2vKuWuio1a;I5Std{iKI5z^@f!pJTiJXU zl1xwMt@iAKBiUL-MGi8DhWg2ma_mBT$7CnlT4rCp?jYURxI|cQCL{N;SQ-oY-uj7Z z7#rDP>u<)a>^EQV7h+hM8x}Y1Xj9O&qS4=qN9XPAC8yAr*PPnDrsV`Y=TS^8IH*$z+F6RTC>i+qbU*nZa5F2sVv~y?{6$LxaIH4x|kRVp# z-J^4>zMsPrTmlc7OYzs|C(Ac(-W*0PhO!I`P>hyw19r3KK zlE!=fqukk>Gwj3MJ>I=4DUsqV2|z8M+W2bkEbij>qZ2VDtokcjqExiDlS_h}$f1N# z-qXk^kUY0I8bj#1YSk{vEt-8D8Os%g?S0AQC5{0(h~wEg1@ABSP@^@sg-{#7;Ed)b z4?$g``a%x09g~s11?(=mVy#FyC7gqC{OX^Yv*_E=g_w@|F5F%Y zch$d}bECsHZ##zlCee%edP2fY8;_rJ>liPWhOHJYITp9q$dO+|Q}B=N;T=&KnSeE? z*$|~(%c?SB>K#xWwuv+`J^Z~x270G)w58ozN@5JBPHp&im7vv>I4>N-j0KcbI_|B8 z6+-NOjTbNAK6t5aIyL?H(x+Dv5`x)n9il2h0a=e>!)ngz@m?>8!Fw7SRbY^C?DINlE0BlO2%=XlN+wy82XE&p;Fd9gO*3m8`Fdnt9_TN$-^0o7)+Bi=| z!3r?glQBmGkcA&TC3th|ONCBi?b^>zI1?1PqLI6RHEf2m9M#9$>;98=bf*3B2rv+z zt5OECaE)M-HyeZqBY}3555h&B5$bQ^O+ALt)1XD~ruqA63HQfZn7l1)Q?gro9-*47Vl$Sr0|5@>TLqUke zK>||C+LBJx`RsxHaVeD8ZBtdm;eUL}LTp z-U}I9PspHKN}q@XjUaDHfp3FOaMZyS0YYQt#zc)e1jv4Zd)7IW^ zVRMyj)U))AV5N5$zfZwxR1yI__zMhKX%GxGOThzM@ zs^}{Tg(zK!@`H%YgA*@Zn^>>it=m*MO0`IrhpZzFazO^c@Pz4nUV8NT*Qm(*TdB9b zz2g;HHg5vU1Ox^i*ON^2EfBahgiXcCbLd>)*WI#^R9SRT|ZFD~uk>v(Z~7 zVK(t>Q{nJIgGXfULUwi=k_WABUZ2zni6Ff$ zg(RnV-KjGj^8bZ$R!V=@>+)`e*r>{yn&De^R1l?ZUZO?k^LuX60u z(QOoCw&AF(0kv1m^KNkeR-5nbf-vJ+({)~-?oP-|c84r4`5^CMKV`2s%E?aj8Z_2M zH%{c&i74ENfB}T=zh5e*!!PY+F0hI@-dyyY6-3S*)z!z6P1;Xctb@G7ZH|i~4kA6X zER40>fTH%1KqoSHX65Rhe8JTII|i09s7csc3Yr(U!HunA-uJ=CoV8Dx-~r^FxFo-; zg0;>d(hB-ib%el$AU*(R3s~f$bhe>ZOYXYnP*u>?RY00yZsv)YZzGS}?RDV}fikzc zvhH#?1;B%m@3N`XN?b;h2(7#>jQM7zoRq;s)K6L?oza+yfo7FyUQKdlLKYA0foXkZG-5TO;oEu(&CI&6gUY^o>R$(GV9O>7Erw@8RZ zd4KcZc~UUekdOj*?rgb$ivqTpUE-*=9-g5bZB8b3MNTGR`gdEF?&9=xQ3Dx=$ND$* z%mQ|N&<#zKF6gQb`em6J&8bYo_<8N=&D04^_`l?=0mrj;#e|^Bh}0m}b&cC70&4P| zW-@hQ<(7{TQegmoR^VvsX*wEi<}eRZ&tMFUi;QI}C`cf-XWYY%W5L>B0sAGZ$dNDqn%gscm$n$En%gEO;sk%YQ{Hxf&sH9X*x9;WZF>W8!E{JA~^ zq>UiN3T#Mqlt0g5>#&ILgPGvs>e>Wodw)<}^deNRm?z*fa?&(rgk7-mYM`H{Y15`3 zK7VG!Qz+c?b&wyF5p`&mJPz(+9WCz)VW7kIS+O=IW}v?QR@RnIWr;3Op%v%U;#)GO zEh|5Nmyq({3;-`pgiYI~-W}g!9i+P>B7Va7@juvHg+z;%Q1;U?8NL+R2seZSaDesI zdQ-+oA6;F&xqofE``=KsB-_c_neO$JH5Qz9xHtCpGyXysF=xbpo5u&?>@Sifz~x}V z^G%ZS*6rJ8A|!Zi-VA;;_R3%{9eZk9xWit|C4k5wxe`#{tzgIZumyKg{#QWj4)vTn zJPM*j?`Y4o|0~n2l$}$eN&yzX+egRy`}>E5hc|y(yWmvNrf(lVe;&4zDRou)innY5$oOgv9=AI1fWQz6_qDzr~l z{>TIOj6RUuRuHQtQ6AeN`rsKE2ODWv)}m+4v-JeM(O;scmPX z7@*PNes0}d&5Tz;NoDvL(=7#snnQ=WQCy3+MOf*CgLil*6tm2o|ObfmZqEh*Pq@xCYH!mh` zL3Ixip!P^A9U5lUw>jnP%r)hye}B0us3`OhIuvZ+S30BK!BC>3R(@^#)a8&^f6L&n zH=J%S9Fhwz7Bkll9Qq`cKDT^4#vx9Y2#@iopS2S#A_1KKG z(66PDUrW_C3=>F$G_WaqOcCzf_naUi?_zcxy4oxB9-W$z72kR4UV;IgNzQ8<>v<_$ zsq}b`uK%!2nZ5tWRu zw*)ejNV&6k4hC`r+Jxgc; zy0iP3HO7}lZN5DsWliz+VI!2^vfxB`HKdZxSxLFaoB?~X2`UAsBZ6ND{h6{#v-3pc z#mQ74fuByzNiqed&#cmh-6?+8?sFC@trJ(TK419-l-Z5=8Z;*--BFgHsyp9Kpj-SH zKq^?pgMSI4hg{(3$~4u1cd**{-zGBp6RJ?FB7zu0KnL>kU{b1=FJ4?HO><&G@u<{a z$?bn*wWpEf9A8x3r zmbM!;286hlZ3@XsYSfbhon95OHrjnszp|S96cPdDsgB4za8k4xv}K6hA6@^14U}mb zcKZjkyN0ISshMZANOnCxTyNE)OT*E%Q}54wD2ChkkYSnHw9}48*b)U2euUIpDZujr zdq>y*L~3v>t{L&XAN8A(g0T;blf0kfsSFL}T8EByv2$)@^@59^9)Ea`1NK7}m3Py9 zsTOCE>6g9)OjqRmyHQT%iBVtk$I8tT4Xb{7f9|At!w+xvswFs+GE&L8xm0<$IIqxuenkQR z-WS{5!19l$qgRoQcf$WtH0b8w?Cm2n;qjM!XPs^Pv{u&#YQm_hN2zu1&PWoA)sdOL z0tTw*P68%mxNr z+10DY-|oL_n^Wh7WI4LqoEUT8Bm#9E$z8 zBU)v~v!M79kF(?zyo34FB{Z6}Dt~`bj9geJK}&9Ki+I?zVv0MOnox5S zjdX~Vz4DjmgV;yKv`6Rolf|yz!0dltqB&GcRUu;>&}JNe>Qa7N3$trTB5j za(jkf7#OH6`PupMrAsXwAF56&kG_D{{LlV4MEv;hUvRTtI-?stg=IWjb#=rOY7h!8 zys2ep0m%&Z>|Tbjt)}6#h}Wk+DB~o;u_6D*XINtCb`y^FYeI*` znMQvg;W_+|U!JuYgDVe-PLi*48g~Ek-|ruti(V7CxvpPrDJsgnh7Q&AAtZrytiMlN!C>OZWK*0RZlP6+7il$tjb8%^C zc3_Y{Ef!Q4)O-j;m63w2x~qDayAMZYFKH3#Hxq&K&8TZo{u?s#$51A*ZDVf}2EV5% z=GfOWf=_CgXqh;-lDkafow?x4WFhxUtZimHIYl@;IDGiv3ys7n!5 zOL#u(${zNIuqP=TS^DCvzH8y6gE*Spy?a+dzkPcaIBbUU#uX<sY3>yOFfA^-N)==kGbbKAbh>-s}#8|gRD$*B;!-9mM;PiAR+RqVn zJ_THZ*F+A(%;4H`j#}?H7~gD!xw!y73J?n&1{G6lHaywaoQlFq4cYMTsf6> zl=k{Nr)T!N;OZPtfDO0L8f;GiNi_Sy;COi`jZs>c+rB=_dC|#T$nt!su6~8Z;%Ds5 z%*?ujG}7$_acd^= z#m;V{rw~+3o+3pC1MhtqQyw-EZ2|#4xhjgs$?pBAVh=If>jwYAjnrEa-pAoLGON=9 zas_B~(wh75#qIJ#^F1s5OeRM|Z2+p_$=Xt}FG%45kOqV42FU8G4W^=E@;7Gr5V;las$%gWA zsn7r^0WMl=D#yX7kImWm8>zkD1LY36&9mMkPNYmQ*?wOmIB^C+6iIz|&_e~!EBP{U z#EP}%%D=U>NsPa7I4y_1H46LR8D|~#-d23!5Tw&9#%eT zpmHN-g(mCfZ4=)o3FPvmCNftH0ya$sCME@8GHw$8A~($G$qYg@Y3BwQx1Z8m{@m}l zQ@FbiO^Kkl6E<$VqQrGQfzzaT*RfYn=6nN`cn*{Lck0q*Wu#mX9Gpcu=%~8aq5F86=7%vlzr) zS=m+hXrp;3d($u2^2Ok~o&cI2w`EIdR*{J<1hvbiCwu2+XA4CIFpNlfpG7|HC&B!e zyENQ{-BWsxf*?2N)a4{&5@2{XHq?0Bo^{$Wkl+4zdt}8O%$ilcCKXRyuvDp_^m|0D zL)#b)tS_~-3te4jyeSaNmcCX4i1!h-v0H>{NNPGoeFW=-^0JT9EuAxG&Me>h`^sH` zfeVqc5Qz?G(jg!a7WvEu3gfv=8120yqE7BsKy6e|V*B09ET$ABm?Q{g@=0T{PGFzf zU_^9|sS?J~AX=6%zaQxYU_3e44e&-4HMLU0o|-wdM%f4$2eSzp7zov(DH;4!F#J zOFpYI7`)I@F;ahd^zIY@sW;zpk!BD{yxBFzqPH;w}Lpx5F+-&@lu z-;Z-hPF)Y`D74KUz}C7JOxm=`912n_ygo=$=(0~uTKkHYt>GijDlcrOzGZTb4Ycf3 zPfAK+Z5*B>F>pYD-*jhXypb^Ne?HDseYu|8|H;J5z;C`hC_ literal 0 HcmV?d00001 diff --git a/book/tutorials/NN_with_Pytorch/images/traditional_programming_flowchart.jpeg b/book/tutorials/NN_with_Pytorch/images/traditional_programming_flowchart.jpeg new file mode 100644 index 0000000000000000000000000000000000000000..ca57dd6b53e12cec9541f71cb942dda96285cbfc GIT binary patch literal 54836 zcmeFZcUYT8wg)W7u^q>SB{E=4OCSLZ7%V!7l8q^wSb`8CL=zZcgb_v*foKMt*rtdU z8)J|_kce0^q8U?!5XE!@5(EoTB#P<1H`6~Qo2iP=DhFBduHZL z`^}j%=dkba72pqFSbS~)I3oP19Z>@S4h4WKfcK6cKXLrndnZnuIC=8D_fMZYbNbY& z(~=(mMb61wkdu|UAT9mj$LdNS%Bv|zODpSLRJ#n)*4CC&GBDQHG*Z{n*8GXdk&`D+ zo<4Q@{FyW7H9wO6Nb|q^JA4iheec*uC*C`HL>};t=#itMM-CeS(mxmV2;k@uz^}jK zCyu>)lcf|4>ns2JhkU^4pHhe(6$O|AhM)ghiT{NEk-&c>@Ou(CVwxNDN!1+@RD4KSu|tx2 z4ef5d4H(L=@NFp*t(80mh%HH-JKg40OT?&X?vF*5wJ)!;VTS;u6Z;UL9|o50Fw)?d ze$zW>R|Yl@`F0+szg(+*aLP6C4b{z8ZH#dzw%psMEj#Yg{z6fyT`nKLVep31(Iu>W z)Hmrr66v)kUNiHC$}L62oo&%dKDB23s%*>ZFBB9?srnP%ATz|36m_hq@(qRY5gWZy z%pR-X_)LD5&IoyHFHiR1%tWiJeNE9YE4R%Ls_tqi$|Jf*lw1OXn{ZLdgNF5>G|L5 zJ^%XmCZag+!fiMUKUI@+G?gnp>KQ_%&yi=7#utF6%pS>&sp@UlitNMlWc$;;xGaAA zcT0G6_3P-29X-j&LFe|@1~f7B6qYbeR|?tDOMdJS&C+{Xj%EAkDHEvRjOLj^?`0+Z z{YSOM!|k<-BegKg_4)uijW6H(@^{()t0Rt%d=m4zjdS4Ja0q~7y5ANA_a{Mo`@045 z3o3e^IkxF|&=RG-ml3@WmE)d0UiKQ88QJdIw=^-F;y0X|v*Tu32({Z`k|F%76D#lzVMjB(x!t znmiM8)N$`*hp9)=eDLa0YlUxj*Z$?q)cEdq&iyWze|f~~&)p6*OQJHC4*@*KvbS5i zrF7zD!m%HIE|JCT*{?JU^fCt8{p}$h?WHg%3{Jm63TfW2{7(GJ40_(B1iJtNK?9p? zfZWoC#W&S>)a#f7{9*N$iQbu*vM^S9Y?=1J@QpZX?r_Zg-5X@{Sf1pGO8pG+`GHxU z)1+Y7CkMOq@Z7aOGdOyuAoATQxo5qb;O*e?0lnE92kCw~zv);fTkWeq{piy-nf{w8 zk-KjVl&|cg67q*9_e?kJ^24o=%Fi8tF6cFB`Yofz1A6azL)07kx!$c4{wKDvLrLW5DT0v-A0soD?E2?xMo=6L7>p*8k%sNl5;#bnBC|LUJDj5 zoAD#HBkk7XdpR2nlNUiu#dg2fNI45#!o|4+B!9AUbF54U3bNYo0GdMXq|ywWwyx-u ze8ch6eY);is7&3bPhl`bzCo99k?h_DJ1xnW=WgnwE5W%XF=f_mGeU$#!jNKbj9k5HLuv%W zPIaLtw7Is8KDDFlr7pq3(Uf+Lx|FOF)#yq6Eq^9;Jh1uapmr$TMg@!`;J zZ1H@mwiOtqPeM_&j31WIabR|RZSJ8n*`W?EHl1S1XvGG}Fsi>^5vL}Xah{S+!$dNP zJFMGN-(9PGT_(N4CsW5RD7AQ&CWNkDQ zysF0KIPEST0$v>gz6gHQvI1W)J+T9;DmNt*-O#MDD{#qiD8? zDrmCZ!qaurcRm?wUB_m>@Rz}*P4p}b3vRHGa0J}sbGj!M$UhGHt^}e>?8)5Y=Qeaf zB`$BNq!VX@LN-^LJ8D&5tBje}p>1I`Qowrzuc9&?n3mQa{V{E9-7b>@N=az;u*162 zLwN`wTzY1a4Fdt!EA{tsG&q-K+>`2^YNJQWD#voLi8QKG3*dHJs9n3y3`=~euhE&~ z<4EncrzDPU_)D2JA)jPPZH`5Xs!d(Yk+4)wf8T$dqyK{AvvDK)^-eynHp8!7TbspaK*?+?!|tholxw)A>|6pfl_Mt0j#apu^28wTxuWlYAf?QD?S~7Pm`dSiSuz(dzvK z+2c*Rmp8XaKHQqFswHC+gKypT3J_x6VYzX{Nw)&7i8}ER!1>-gpRgJFosY!@QeLB* zSB|Lpx#l%zb1+=Ww*lGmm z!MIe1LmIyr>8v<)AuoLqM<gh8@ z4Y?yVk%S706jvzwnxgc2QKvw4`O3%p-?ZfYz|pSxoIIM_IOz~kWj=c&KCsuB4S@l* z7$+CmmG(D{^A*KAE;NanXK0(V0xiw88+}AKj&A%stsJTAseK2R-0!_Bv&UM+N^NLI zLG&;D2KC(?&v*Im58wU#$^V4E6ZLPQ*jzQ!W;@@tNV%OnJ7b#q!)up5{Hcsb=K?0g zeRu&2fnDaHYB(HhW{JNp=T=|j=tWm0c^W-uw*;(1BK&4v;f#)ZVzAdh6}RB$I=H%6 zbAR9fx$?;DZ)*B~SX!4C?X(75l)mbH81zMM-N;2sSf*7MG6*Jyqp|8y3e1+u0f!>x z$`caVW6GRoSso!z80V11a2snA1&SAOq}DrO^E=sFMfdlfZNgEDdY~qF922WbY~WeK z;?jqsSHLaFkr&%aP4c-U3g(56YqdC4r6i8xMIp^(8Sxq9Dj4t(kZGzW8(gIAlazxK ziBFKpl4jeBDQb%kO*oRxK1rFJStm+7L9Yzhxg+&qAibkintnOWY z`HESSY2&HHKjsA_YT3zVc5DQ~BUMQ9@i@f$_~D33Ll?Gq(AO>FrIVYBoGLL}XvA0R zI9;kD3LQM1bQ*y~sm~^TW!zEEhIh~99P{>>ln>tGntVYm*!!}4;>uCnvDQtgQ(wo? zPDWQ_;_nM(!y=$b!HX^6jP-dDv}$UEMoe}0G?UP1u?xlL@Aj?i&cp==TylDVF$prj zYm$~=Qap48Ni}xW8WJ)Va(xG=(`D~mJ}G5d=Q!8O)Z#7m&zABa>t;Sc?S=7`rGdOw zZIjH}Cte-T)Hc!adZ>l-w{!w|-Mgjim8_d9iL^5C(WN%s^7>br^O2w5sSQi$K@(I+ z7t<$Uw&pMpVy}epa&0xJAYdmTU)(yeX;dAJ@P$K-b})I7LC(f&%M($`&+Xf9PL?ls zbCYTb)OZHPGb}eg$VaA=lbky@-eTo(K2h%ur|^|eZ!%>A2i+zPDXNSJ`XmgRLmyq& zw_>ta0^Jta3)bLJdhVh*s5$a(wNc&-rdY!}q3-!y3p4y#&bm z(%^AsbYow$TfwMb?+q4u!f00A2Ha#bYHd@bDMef#?;cg(n0L)I)ysu5Oq9G5cMRQt zFM51k?bw=_Np#Y6luyf^7VsQzW68QZxm(<~x6MVf=lz<;aYdSZop_r*yY@X%XOsFZ=}x*q4f8qDiJyspL;88p>d~Rw~3QY{9y9b!TBWe zo)fk+C`~EU;woj)-Ona69}UdV86+`gyWloJ9ZNHxnmyf>#q9ApD;v5$;%VRRmZw@B zT!P-vW!HsltFRD4Ug_{_T+PC-0*Ablg2hkyI#nhd}}TF;prhj z(xH~~I%>ASelxSu=631NC1sajZC4CTsH{h*0K%pIhEanw@7WSK%r~l;s+&YYD}F?! z1u4e233pa@hCEwTE-k}CzI(yhG9Vl#YrnYg)KFhdIOnkax?=0m_DmKjKnbiewgm!z#tHy1&=84ytYe&7$ASFQfOK=N$ zx>5uMtw{20k=?@H{IzzV(`~g?f~}dbW!@=UW}DN}gjH^B-%)j(3X0 z@^IN!o_N(cy1((&Tnj;y4cNCfRtEc}$&pE+rZIW;uC;uM^!zFqC$7|^oxgjLX50#L z@CZip^a&_pp+aa9$XM=5VooWPEN7>gXD>+4ViM#-*UgQFe8DX{pWdFxSUo`Q3df3V z*``d>lPjpG`4}n04b=-QnV2SI%RmD(Bf{z;WdL3)N#41Ixmj{d5(~TY9Om3> zb)iWd#Z06=p{6Gu0=_l=^yf+C|MEUsSV7=UgB5}vaIyVKBR3|G&J9o{8FV#7O8Lrk zmuHQq9D6iYFs5bX>B19s%y@0Vq=1-|gkRG_q{JlSAN(w!xBvc+3+wHw{+X7R`OWb~ z!`Hvn*IIqiG<)Rz-+un@dUNaJx0Wi$zf$+R^8;oq-g)`EB|Cfew+9%{f4e7C`UJHB zxc9qU{^b!SAG}dP7rd?RFJ3SR%sJxqy9N5+3QXQh;4f9&%6X-AiU-wKq7yy#N0G=!LjM~n?rdk$9> z{Yc+!0cFDfK;F`D*jiFuSE*TflO)~W_OswO>6l@iwV|%x!?%*$nru!E2W(_VuGW5* zwNh+k^y~sGeq7m$D%>S68{&%F&*|7-CU+U_f`s$kBim{&BD?PeGlNh|X)K_e3 z;;5LOri!MKc9TQ24?e+|VB|baqGxx-&SYPB$)n%wrwp3Ln}Z;sADP~tQImznvxvyr zIJOq}KBq{6P(-%1+|zC`2ORI6#* znme3qQWS2zmY)6n(DkY^^q}>LwCn5e<^@*kV;J;{NaQD6~Y7nt^{~&>zQoNiEe($T=(|@i} z{>`b5oM}xPAK0DBx9tCHsx*4MeH9zA)}t{0J&y0Q@a>Vre{=Ev$?V_NQ*=$iEoBwU zd7R36DV3tp%G~O-Pkwf<(~D95>2d9UlFh$4*&haokfwLFLTVMKhK*4s zZ4$=Rp?<*mAOFq8`zN#iKR7I6#(M|_uW&o6afIBC6;UCW;@@leU(>UseLj~g9oMI? zUM=e!(qsx+IZN@K)jlYVcrsrh)QbH`T#F^EW z#2+p%e)%lZF0LmX>H5${6t%w?)E1?y&JLgTY;yKBaS4t+=bSS)-=M&`?4X!UQek5u z@bDpXob=*38__}X*5ZLiPHLgkKur0_X8kwb!K*sB53 zRyp1J)t;G_w&^U}zA4N13p=4UGHob)vfN%#`=islqOsi}Py;J7$vU5ZdU-oabl{o7J zLK@)+!zsDuBvDR!mXU-(`41eNmD$CP%e-C-^~#H7aV)b1yDnGF${g(CU|}ph{PvHF zQwGRPYbPZ8>7y07J(VS{7@p;{BuFk;iW^Qa&0LRm`cBI^$#1*Izl3aMEsB^$}VzDOkBk1ZPasu5+H`Mb8HA3T#>;eVjU0jPwI7xP!-j-{S0_ z9D4tPWLhFVO}~k~P^GIO;w_4*5p!ah!J#hpS%4S*{OkvNx=3%}y%$ekvwBrx zGqv5Asa-NmI@+Mh2nH4&L?%E|-JV9mDrM`N2bJdwjuecI1-{y+x*eszH(E#$M zZUWcd$Q3!VY9z*5K^T%K-PXF{#lU)#n1ITQOmkZV1P-++<$|gp!AIgRf$;$S~Hp#_fd7@CzcSqAZcYl-of9T_XhQ?yaLZ`>i z)TrGy-?S}v`$*v?2jI@z81iH!qc;C?)W^k>BaSrB_>#m+!viAZJHLc6j6cV{nmaAm zsuo(I6WuBC3%?V;^7Xa9cJR47r>^I`=>z*UKkqYH>K)pQC_fYY*G zFU;(3uHgM2vv$8;d-`j*xe+Zg{>W%R=FiNIKkXl#AG;d7b#&_5FQMDQFEugzGqW>p zB~AU!kCqlsbkzM4HVA&HNzk8}U1<1^ScKyF2V(h#>`hgNb7&^*qn-z<>s&eK>R*~u zq(wBvBZPH}ZRK>Q+A?5*fJvS@PVIP{SH9#(U7*ht5^};Y)Zn<}bG3HCE@!nBqrR?A zZ^0k2pNcg zJ5eh}v~5I}=y40y7f?p5&94QV4QkelJbI6*b_sOW6O%6(n(#MnrIII2$eGFY9Vy$$ zLx5#&Mc1@mht(kmC8+WBkro4kIUSA}dPADjH{*Kptewby?* z{wk>d$noc1^uMO}j4;}2?ib?ot0-W3z7-}Voj#eZJ4PzK0mFfTG<^Jf%5qhXi+cSfrlW9-(+!a=8&2jMBBSsEC- ze^kMD6h7V>$eBAyB$C{ZLBXA7&|Gp&S*4P~>z1CVR}qjrS>YAAr~lxJ+~)yAxkG@+ zn#$NcTPQs@eI{3S+$O9y_tSW8QgMZ5ZJ%**s^qMXp!3vu`Z?x^*=O;@qoNf`#oIUu;*SW!?oTkw_ z8Cu2@gTO#L@O7SPj`dkk6@CzD+IklryLHtTg=s;}WkuM9uED_vWTcLDd`|nB3!Du5 zaBYVYY&`x+l8?3x#9X^2K;BU7<0Q%Ls3(uO7fvX1{mlJm z{3FeRaM{yB8}&7|^axJvQk8k`nDq1*WXmgk3^*QMmyj))qa&Npj3CY!dCa|zBrWgj zuq`oO(}hNvA0{f#PJ&6r=ffR3Q5O;3KXpy@R>ov6!VpEu zVZtMHtf#pR3BH34GvuQWy(%c{HoYO!N%|S32WkiRjL+@Y=zPA>Zu)WTyyAmy{*;7; zI~^44R{`B(xcks!7h#s>vJPVn6k+4q+@D~c1r|ITxFoK;Ha}C;Pqt*`J12 znG<$Y8Q^{3K=!#6+?sQ?M(1VRJ@(V`6>(YuE+c@g^5{ z_#Zlt3iHlHN+vyN8mu4D8yZY3rzC3#2o5hPgyBxlNgCKC z)eSQ7H8ME36c02=C5}KMQ;|clk))`U^Le6@Sx*{yNzDkOo&2>)dhos>EfLn$kkfwZ zR*ph@fV7g6M}?!B%{EsWQy5+bH}dF090Fu-Rh6&rIF@0X=$9NBP*$KB40_I@3lc1^ z@cq`2w`vbGOuOQ7fkY^DDeHMXSiPv&Z3eIPCd-IfrX>fsiFiuo8)&kiRpur$*YATZ zB}o^P&#eox&n?f)%y@Se1lj};o)nTWlqY;TMu=ya@+%#qlU@a$DYF?icBe$yjg7u8 z;!D*`>#pstvBZOWs;b@2>GrkZgJ;0u1A9JVxEY2RR2z!qqxHK?tYj^dl_wPRxan;H zWRJV7C46jSlgWWXPN?9X|5%cd64jxlB}eY#)~6z8ok-WTZi?yW*Gl*TQH6wsj=k^{ zLEMV91XKO?-)qWu{sJiq?i^j?Q}gWMvKivz2vbk0E8~L93@kcV)T!LI({s zv}?vI-(_#fE6gXKS8n!5yS8o7eLhU<6qA$ij59qYC=nkcpX)q7a&C$7C^&RYy4Pho z39YJG9m9Dx6bM5K*JHiV1-2O+(uohgjmc?9nXI_Aq}+hEcgV_#%^`~#Yj>J8E(nAm z?EBW2d`gg_sxC#%2HSH2sO!@Ub=vqMm`q;@eCMZmN77nBuV^rHRRhU%=6356W{HAB z0I>3my)X{yu46k=w&+TI(!fRPXNVySx4??ex%P|Lj(pPQ*|g}jTjccFpy(S?QdQ!`$uECN z^Vh*!Ym7%qK<;wG)yR_lHmUR6+aWHu0mnVtBBQcr=CQ89YHXF_=td_x=}CMbTzbco z78*B0$eFdfQ8ly}{=?JryBljuy=Gi|fpCk-nJ| zhO~Um%v*g7bd!u-I>X%MAUJQ05~b^97vP^gx^b3BKQLJzYI3NB)8|MigRW9Iu+(pw zToXMklRgi5T%~5=)`lt4SBM{g?g;q-Cv=vI!NZy>ImukhlRcd>& zLF#sGd@WkNH^7S!OsL)fm6}<;kNzm_6o?2^_dVOEu(6oV3DT7~=BwJ|(7;1g(hIQz z^u$q=t{?+AfYx+s@~KkYyj2l)MY;L9qxYG#u_dSKxH26MTtLUf4dteffq-2gzTYKp zL0^*1u2gYMv7NX&9Fw=(X-b9ybwVoOK)EY{E$z?l?Ajf8?0xAN4N9*#B5-tla|-pdc2nQ*)5>HthS zokY=xf@HL0%G23DkX@WKK0J9tYY;~%;e1Z+Z}v!^H;&hK%PoUTXdoaQ8#t_{n+xi) zRa;HaVYB3)yMgpB(ii2-m7E+I z_lhCC=*r+JxHb63aMTAQM0fuxyY|jcPv7|ecX^OC!n)mU_X`?bsmKTkKWDMw%(Uy0 z+uMUMgfJY`v6Av|dO(IhR}?Zwe=@{O-0`A@z~mkyf+}u zxzufiGFbz@Wa8d1Vl@q4W#Wnn*vpRe2{MPBg9NJ-QJMSaN4kVCJi@f~o|X`X!$wtF z+*RL#;hn3i4d!K-!FXHY?4N<3j-`^66DjG7W|p5-+;1?|XlzdZ(ZC{upkXc(oD@42 z$Fd&noQ8E-3&!ApF`w$&r~hhf9~t2U+^PlFbx45f1&xkbv2=Z|abH$?wzTncO=o;u zw;@>4#p{P+Mv=ozVav%P>^Qf}IYMe>M5atOZ33aeQKcQr?6Pu78qUyxgB=Tt)K;ir zA=W(%$ShJsh{;u$VZB03zEzQ7BWkx_7#Ikbbun(eQ#1H@P*Eq8b)#A^D$I4^(NGor^S%fww9Ih?czr=qqAB|9H~`!#NArw<&0E* zQq)S|cfxyEl2)faX`JlWcCH(}{E)MF-C2l26%rPzmVh##(r?C0UKC6+)n2KM`d(9} z2$$yNnpO83S<+xgb_!B!aiaabym%``)I zilh5QUYWU3iPuaaKFK3CaW7a^uw8Zy?Ff{NuWnPP6-NQXCRoAhP1*=&j`l)0RBslqvuhBsd;Hs zC66k%G_e6r9G4u@UDOhh`6^#mu`np#%o3_4 zI+(aQGbTt%A6vbO)lzk&4C3IG{vZsIq>@h03WiT-&HKLWnIm~oa`Uh^E!JxNQvyCY z1PE${E^G!)uu{~xQZXD{q5;X384QeJ>M3WWLSaju8FpObqNem!cJ9U`&OkP~1$C*H zQ;W~~9*x3h1v%@*EjId^erD-tV~BVNp}_=kv@>z(j5tALHx47bdQL&1z@@c5p&i|o zoeD2|=){s*XOtpwghLiyO|^kKMR5Q*<7-CznTp_9} zHe0PNYeB}2gWu*_8xmC_>h=)uKM+t(-J z_I+w+Z~FxIEdAWOC_j`^EcH$$faV^Ba{=Vyb<@a6WUiaHJ`xrwLkNXiKjqV5R0K_IBgk~``bZ~!ea;;QF}WqWSl zJHLBhCrF>E(^Rk{ADpE%D7di@GNf)lT3G@~N~d3>dNDclF!|8#m0g*vW`jR2mv=5l z9RfaFoyqSte93Pfdf4et4vuMrb<__R<`Uz`+bqZmKeWV(+hr_m7&z%6ojrTg<-2wq zq}RA%lwLQ)aQ1~Xu6fZ_`1;yE{xn~{n|3iv3^lYwZp&={tgnLo zYu5eA^CyXB462MI9Uh0ZQ5VNMK% z^NX}(P5^&0n2F8k<{Ar;l1>!d6t*?)sxd;E)PYHbx1WP=@NA>5q^2QhR|8rJlm&lZ z5%^p&fS&J-I07LL>yYnWZ#Nyfu zuG=l!$M=QlR$KKHLcxte#+Bf>4rsn}$F^DCc;KNzf^wUNz zbfNd0-G|}Ru|s%T3|2B`S+HABy}Td5UNRovwX=CR*~hH?nogG=M+A6Nl<6S|i#;zv z(u#oZ&b-8mc-{*TJ;lm#@O5J7MFBL(;w zYGn>3HY z=YtS-V%|9@X=X&UY9&3^zxG{{rx4z5Pj4DJ$SG|rW^sh~V2yFSX{uLJE-r-c?ltmE zW2&Xl$-r;h>cyI5-7Yf~wPH70V%3+YTgVgDww!7-TW|4gYAIdw%KFN0a~-}*B=;48 zo(tU%nZv{9E%ubNr8nu>;``3^QH;eMde$30#|2BH1vibsDXp z(coP6^=ygmbe6FdF*_V+T(lop88Y4}tFfM0B#~bGV~F$|!m}6W+#(l0cM5@KJ#6CV zQWsjs&YAg^cL|avy98kdE^JVR(V9linfO{1=_yxByij-%dX2_ZEjXIg4ywFzOcGg9 zhUFMrEfj2#)B|}{n_I-;$f5bIN51Xb!Sf~i0Rz4UkNo4e+5@2QBBAeEl}WE2eJOFT z;uwlIJ*=ury1%f1Mnx+ntc-LCvK0TAt5qOD&rxR=>tPz4SmOS=*a6ZsRk%c5An)kL z4e8EAH{@W-ToPKT-CXUB#}(w-Q36WkAiNk0qciMk*@l_^1RrzUU>42#z$pS+zmVG8 z2`Pzd+Z8Gs`!obz2ZW)TKOMY#2p}*wzgh{X6SKJAK3deAfCO)ck$rtXj(R7m$$9sp zxv&|FHvc%C-+8&Z&F+Jy0leZwZf%(2U@(S+mM3hEXjV@Eot(Mnz3q)oXyT;JwQS+G zzTHozr+frN^5%lyBmeIswf&-ss`tezrJo84$*wVlPqtF8O;2_Vw&e|(ZVU!iv}dM` zdX!vP_i(gCU@}Qs;lvHTO6^j%ZBH3~4ko8g#GiG0z<{S&Bq{B_)@D2B#vp&Ibv8(?eiysLprK67|^C zP??~lkuSqoayH?oyP&S`&ov#o=Ow`nu+r>;DlFl;{-h9XlyHW1t> zxPE^>E!OYzjK`1@S`FjJ=7U$radk&EEdj=)+K zVx%WhUu|~K0Bfiu+`d&g(hG+r$IRB3^X6{c2icl6E&;nPmc)4W{Y_;7qHi>8H~(_z zq4JY2#QdLqA)3t%N`~8X#k5Q?P(5Bke<%&ateeiXh*7--i1qnw>1|ZsagXR8689qG zyz}tqC=laGY*GPAg+?ADQc1bQ)tjr6%&hXBKFl+=Vm34N)gs$`b_J--=GN}P&BBM~ zVUSLd@AGbtdPSIeLucj;JR}SYY^o91K-^p&)txExWaWw`w|h3pdd)fV{h_QTw0`)8 z84O;Dne5;i@hNnaP{DpaTf&0#-SMC{-AwjMdOqXJ@lC}=t)r#AnDn9Q+&nU*F_2ff z)If`$Y<|ky=77Ggo4ML24fQ|AOK9ZSV0-ZebgH2te#o<}3xIac^2%(no}Hfr*=YnZ zG=2IT2WU4~qRu`h4oMnhBn_8eWbeSM3_qh!n!*;LVuuR0tNOR9D@Y-JW56aVphM|P zOtk|hKSzY-JHC!m$Q^DTH4r#aqNFl_P?KG(D3{BhNlyCWnRL5CHMuLf-lZ5C}kWd$smLMI1 z5Sqn{fN+E3miOA#tPSJO`RMq(=2>5$@1U>C{Nc#M**zM#mHAl-Js`hw({RuR3g=>o zg~5c-R2WE#ZN`-W`!w}*^UyoA6wK_FglKe&bG7wB3rNe^49+cWw6>IuzI`r>IEpqO)s)LxLOQv%HGez-~;D3 zC(r-HA@mg5p$7TT1~cg%&$!3HPr)dxlrk+lE*P?I`CityftDjNjY6Y$>Za@ltB1bl zxWE&GnS36z_>VUbfasHXrFOynXb%_H)X}05>`+FjGs9xN)6jq`I!;XAk?OBp?idM; zYnOR&D|38n6)J~nR%x;W>0uH0g~~CnI3i!~5I`l_+@j4m_g?PqDegzRh6AySvgu6S z++oZNG0D_Y=jpqv4v(6e9U2VBX;$t5H)Y-9*nSMZt)&6#pf-}`HOZA)8Yku*^iH&O zSQ4kSCxB_!icpmaL-FJ<$dg&YTE5R5zl=5czA;nu+ZCIv%VD<$Ze`7w6uCKX8a!cB_uH93Ie4^%8tus%9@OG zY@fYzPXLI52%5~NRqm3 ztt8!HEFtS~+&a}e5&p#R5TMmKDQP7_ma$VVWXW!t>Js#ZlkvB3Rh`GHMN7?s<>Yal z=+-)ssf;jR#68D28@W@5TEic3v2?7CS_~f z@8>#7oJhMd*KcJqs59JRQ=|Sw5R$isQd$ppF`gRl^5zn2+rNxVgXM0#JqxQK5H;rLxrgkGI zF9WJ_++~+_80Rg`!kJPPT~4et?tDvp~_t7y!1z2>0|o*jC9sun+m1U z4^N?c$Hm1>Hm`tLCu^JxMs?lVfT>1#av3uNpCr_t3*y8o^t>sk z^f+ook|{)e`_q?Vv-yQQ`_Czvk>cn)=WV_!HOz~+5NOu8<=#?Rx0*N3xOo5a1HXoV zs+NbBK;Pu46sNkYGO9LABE|Ctty%2!5k`E1;m)Z~C-G}-S_7MdcGN*wz+hggS#QAj zK@gH7Z1t9i8uCq_Re=Vu93m;A;ux&Y*)X|q;F^X4>3Y?1&3dtkqbgIq;0TzU(`W6^ z+Ey+APo|>0=)7Rfw#&Ujhht`(Csg$|U(RN&A?@E4R)(&w3b->E9!va58CvK-k|IyKLD40kz&4^k z?%p2P-%0s$M7zhv#Z*EJE_5n4SQ&;z7>mku#F6)`>P1p-76H?}oPw9T;kW_~bHPKH z)NaSkM&7!woW+>`gCW(rZ#oS=>wXlrcBxKy-^s9oPoMWMG@TvtY%evdsUW-N2Ntxc zbUQ#3EZ(Oxt6drwsC#;X^c|%K%gvkcWEs#Myh<|K8ukfPuek^+E+=SAnt9JCmETTy%4~=x3@IF{8vF zP#Y90+{SiG9*s7s=tI|3mnyoFJPnh-@@8B7@xjm z@A;nJ_i6sQ@7&jYU*mJF&-EGa&k=h_YPcT(lWZfS*3jSV5itca7qf2TV>)RJL*q|} zY>88jzE zwL#1~?aey_mDH04VFG9=urcDwZ|?s(#KJqZUAPr%h%b@J*TwY`9^?eX|1p(YaExT-&O0Bn4bj|80iwGN3LNSwQHYONIy`u@oiU>EUND) z$hOc-L{;DGg4NP4kDx z^lpbPMO$C*D2wVV9KiJ}ACNFX;k{9FfALsx_`F`cM`2dh^ZD?VX@3kMhZ{6QiFrm~nJ*@mV)P%}Q91 zAruM?X7?)k&OKQ{IkwqPR!6#wo*AV(vu@CiNQ8WAh6$W--trOnb2(c%?MKhil^Z;T z`1v(&P~>5|{!%P!i!?Mt^u#bryR%E~hoq3#TbYL4rGyQV8GOPp|>uI+k&auZVSJ#I<41J@jm9XvT-bB&8s@&%0%Z z3&0yKjocHi&-g^;oM>A^vqk9M8Jj^P^t_2&59o-mC<;&JQBNi+r*@lR-jjWNtwp=X z)7OY`3td#5eN=s=(V@l+YHQan5aSv{8c3kZ9jW=eJ3D5m>ZDUG_cxOW*Q+N{m&bJ` z0Z2U1;Eu}_Q^pFZd?%+s@m(uyB7>{*S5R1uTmJ%a9j1J zdEdI#M+u{~?Ojm+ft;+MF(8A=-Vw)X%7lci3mBno!3D`Qvah)64?457ivuw*|E#YX zgTRLVuE!U;2h%=^2@V^Nm1{*I3zz^2Zh8v-!N@jY zI_DW13QG)Q%>@5!FWm>ax#Kx!`rL$K|M;~5*GuSpl~>UDaz?!}`Y2cmyXirpp0jb= zAZKkV$cMm>={;vqA6S?*F0dYyyV>Z0X>#tTb6V%(b0&qBuwz?~3X*%m?dz^m37qmu z(}TWY2_+vW2+xDpDNRLj8q~zl0c;;d;Ord( zNIp7YSU7+jX?TX4^PZP$mj3|GA>ZhOR+i34`8>=f%rrehqRzc9C;NG<%8F`CV}xx# zD*O3Wl@)#r_dZ8|^Z;U}ayQ>2BIwZ$?YrXbqm3(5S2vO0IIYQDeVyz@461*Z#>H&g z{FHnmVW#uoQpw*K^Tr2XC%0)$U6V#q_-mw}k_|!J9MK8a>;8QaM_(sr_;mhNv&5Pq zc%6(>$~Tg4WxX?UZ{@`6pXem|$?N3TbowdzKZcAWKTz4bws7M1*;=IiMkL zr|aSqrpJ#QE;Tm%fd9x0&+q62~U)!(t$X%V6Od--r<0uKl@bnHY_=N0-@Kgr} z6SpjswDm%9=D7bT_R28EnHahx;I7aEV=e^kNOq$ni%>e_47(83+$JdIg$PYR&}>P$P;vM=7`$B1~kO0Fpjw+uD)U z?m+}2HN4jIFAwY*c0tCdq>ZqtOC!q12GvdNe4I9*)__EWSwBG?tM=YLZ+PX~R((Zo zcre^mWoW*B1!FiuL!XSY<1$3W7qTW4-oE}2oucY_=tfywnUtPWg_$ih*2fYJn%hEF z()T}nZP2;@bYozrj{i`F^nqn_xXo@jw_MQG9%I|)5-EJFj2C*Wy%1S4h|%A%*r<4v zdnvo<5;J`}EDDpwjBed9N3p_poU434KK1n*%jf>zI^Edp5xbd3 zQdI9auyVXA7x)kR$Q0zZ#K+q z_iRn8zBlJymvwFL+nzE2o_XNN8e(HI!YB75vkx^{rdd-VP5M}u_{PSL!P(O}mtd*% z_${x{JAvRV505MYU8nh-gaOo0oxoSvxB>t)6A$jEm@f&mx;Xab{U8@V z_Bo%TClkm3X#^F^YxXUJU{R4}9DG8qiiT}qfW^5lStOtN1__U~_lb0#IYOA|p__xT zEoUF?UaaZ8Hes{ig3UJhwgrrjLV(Kw;TLl|xKpRNa!b(_I_`{eWN6gfnJKz0h0r5L zkoc=yS>+rMOf=GFSEhYEs(6j5nHVii&DZHlpA1h4kUAT+1=c;OGeUqOI`}nO?ZLS9 zEB74BkiPHQoD80nI`q{;evUt~QHal#he_OFkagJWuEL;`vC_MCA4W z76H>yXb}_J=^|R$cU-L>3yfM+X|{D9p-w=|#U21=Y_h16p4S2ra{h74H7r_tZNI&H z@SfacZ1!krhDsw>e4q?aV5?5{mM@CKAu|5*R%Q=(97Z2_=Xcl3BOJO7_#c%(^3-dt zKXg|j#nmG~y8eqBy!OzO21aF-v(_?MYoC0peo1(}(Oq~9Dxv2{tFh=t81<7C4P&z! z{kLjs)1t(h_D0-jl}nSca^Y_CFGTjNQgyC%SEVS&tmU+8*1`~V2?=E7d;p>sM=2z2 zd0sb`(+$!r!-e~|sW(+m4qg~{)4`>M2USYOrsG2Bae4M|kKJ0BlcyhCi|fo~X>+-p zoWTIW#?)64lbBY?TQA*v)RH^*c_@%#lt@N>!e(A94*?kusj&B=F3D~+dw$6XlE2k4 zgglJpL9}f6Hp}A6WWxX>52b7CN)55;?ImJY={+(k%|lJjWFHEzRhg)W(lZl4Ao3r# zbjl+PV2Dv|l$-0xrs|^M3OjfN2VTpCbb*bla*U!rPkZ7f>zK5PWO*^_ZgC9LTJ9a2 z$GW46jKf+BCLQSd6>w{#1;~lw%^}cWxE3j^Jdjm@MWCxMQ+Y#Fz?dMmoWVc((NtWJ z>f*Y(ZM$H%gxM?NRyPwlP7hy za+19y_T;Xx92E#!P4+uCQL#H+>NZD{+dlTC;oCb!6WC6TjrI-_t8f0vyspDbgMsx9{Z4{>S0X{W`%byE>A=2i3zE@?#5!2-fx`ncvG#b`9 z&5*HnRhuF)zT3K7lmuzl)=@=Hh50nN)YLgSP<5!fso3q{Mst%j-I42JdQ4 z2NtFy;~$?vZG;m8^f7&Ol~g>XFrHK!fYgaeh>5~qT=eimIcCa;>1DU>IuF#?LZOR{ zKz%NlG2MXZEGE7qf5*i(qH;>!wb&*ISZsy<{_$MIq_o`E zZGk)L2a?tToQDeoJqn4sw5);A?;a;d#tgvBpRPy7j8cr?P z(jbgy-0Dg3ehk{vESmd}qp!tw>R37xg1G3*6h~sG;@Zy`?_%v4{E+Kvd?UULa zuoYAAMOFv%9Q#tl+=&cl26o{cPSvc=G{b0X0f8nK=7%ltjM+h-j#XqR$;UGb&t}}) zIA0u8#I@Aap@of>LwT~gGnO7#Ry^vqJ~ju8(CnI8)iK5cSA=%4dN(o)7kWL?Px8)5lT7dk*aHu%AtY7vDVVpx86e$N6OUS z^L0IZemuze2yTu#Ea&e)k6zWjGOWaYclq5CB)OL2`=yuoCvhGawp%J9d`4v3&HB-sYO~(HRw8X_SON~6 zA!3{e)bMh^Q~<&m@Xn{`nV!)-E!|A&RBh8vmE&od6X;2OXkBXIPXDMO6for#D_;>b z@t>85Vmq!jIFnDR)Zqjnoj4%u$vg!#_|1ii*gGUJc0!zIJy6u;42{tW!6pa;a*O2V zvEHr5?Gl5-&7yB#ujfLC@(+R~Tqc8sBMb)gO0Ja8xo=jXv$d%KNDSOp0`=f-M53vr z_hmfQ@FsxsrwoUhHFISe@5h*{P<=X2113w>3Gu>CyS0zC|M9)};P;t+9L0Iv@#<$u z7EkI~h0$>Ikn^XRGF%A^xR!19oG=soam=wO<773W-{?HQ44vCV9s<8a?TdN(PfR~v zNiyU+i03&)mZvuik;PqsLl>x<-AE`D_D;2j6KhEOrW=hEda8{^svIs-0~tocrkvH1 z*`Pv72V7S{-eqg7ozLu^9SNVNh4F9fR!Dkh1g4~Wt(R8KyZTxj@3yp~LgZq)APhjd zC16*rPNnuljyA|N&P+`xskCWEBlV*01FB6bM|-fs(!6@o`&y`;na!|HR;&U0(%?<^ zAYTx4OmOk}PCrw2nlzahnzMKaRejLvX$T4vJ0u$tpo6Qimot^yfeLeQI||VZflv@! zq5k=0%7~JFx;R|C3+fObpF&okc0JPX@6bbd@=6XW9k0{kX;0csf&q(P?YsE1Yxj_58cL8r-^|(X&(xg6`&3Xf?)! zxUgzn9-K}Li93yNuMA2yIS~KQ%%4?j1cjOj@d*T~CtFt5#BOnrRRXp{f;eSpp1A+u zWRtTA@viMPp6oa7_i$$}Jn0K7!wzXV#n%t=v&70{Vgt$!fiqLvGPSL~328chzp3q5 zl3icBA6x=yE}!6HDCo$K0kbJa0qmqlbmloGMHm3!2B{4-bHosBnW02Xj1HSD9RLt%fRUUa9u=R#=qX} z0|*P=f^x`4xI&bPf%CEB7-+1Q^TwE|WK_WFdC!AIA&Lpjwi)Q!6N45qp(u7Y5wOc1Y7I@(NQ^?K>$__TIIWPP8ly+es_IR) zF(c+qSEz&q#0jtol7*i#B1{q_HG^DaQfjPQLvt#rEE<4_0I4t7Jzhi7++A5$UYo63 zz};==*e`9itWu+8t>r&RCyblD5YbSGoSAB4dt1v!V+P5q)z|?#QNWX(^#x$DQs=Ga ze?m0b7|IsN154km^WlaUf6~0uC5mq2LCYE?&pc z#A0V=uU=p3F<*GI(n>x#H$N@WR`UL?d#hKgzXxsI@DyQ~H0F_z+RcSow+K6rk}9XA zQl*r(%w64#pl1jmeJ~vY+KM?J%akV^_i)nk-bV^mv10PcFh!qpt9U z)e-Vl;9Z3rwh}YP6gGQY{Xzo|hwX1PXA)5n`h1IJEuNUHXEa48SL&RjZ&96o%iQCY z)zE;xc8o1LBE32<%SH$hs|_IVu_ubBa5s}5UR*vL;45>jG=XtKe3&7@=4rIOeS3o7 z*ZwqcUj4W?#jl@|kW2aC{hlSqmGzJC?GK*45b?Khi=fruXn=dU=k$pGHz!&ip5{ZM&HE5qBO#tx{ricVZOe^1W` zKw09UFz|MQkX!k%Eo7mz9_=TQd=+Lrh#54W&bn=0O;%JO;}hZmGrq;HM3=I|3BBqA?-%R40I@Tu0NfyvsVPS+Zcb{K7kGHVccB0ggALPbKEPRRgS zK&`$^#{=QXRz5wcW$$9)-=Zk5&P3{DTNjx>!10$+*xvG8P?IjX!u+^mKtw3qHuO;U zf^{1bl|a>djvtk2x8XN7?`rnU_f^~|lPq!swCfS4$#@E0uyRh=?A0gRJZPKpXjG_W zY35pC9U$-g7RYeo+#!j+dY>%USx@>OigWlSU$!i@-=|U^di6nph;BUVEUhkxoPPY+>R<(SwYqqS3@jPI zaVVe`8unCdFaxQ5`HZa1@Y+OQ+W5=Jyrv~nS*@<=_>?s!3b(rqEA{9&&eM5W>ngx7 z3JkUE61_VpC%HQpTH;7wz=K!Q^WbuG%0~O6m|nMj_}0Ks~CVD#?hUeXj+>2IKB{2gGneDdVCavAicKp2X@2d6H#627>c1{&@ zsj=glI{(f4_GT>4IpT##a#?yYIH5$!-=yA=E}-Xk3&G}wt0w;D@G*W|(&dFZzx?za zIhm7Xo+rL&9ArB%#QpuV+L>S(v-b8ynY9foBtPc;iD9n8(UU7ftXmW7>M(1>XaONt zcGM!+huPZDlykj&*X_eop+WXy5>j5={1kw!<Tn<^JVF+L!>@e8y-ZFDHvgWN#k};@6}|gXMu7faMt}e& zMJoUjXB413jOmn11qjp*c>rH&_PyoSFxXmpAuIDVm56a;n3>rODv>%!wWaKiGCkv3DN)9b7ej#NVj*@lmT+Ll}UA_>nUjH}j6VAN5{+%!nnes!nP-q3v$v?G5Rh zJ0o$c!8PhSukSVBuXp;N?NmSilhYkxs>IXLXWo$a70TEqR4ig`SJuXx4C}8QP>59R zktGb$_uhFnsjt2>o99FHNgd?DtU+704S6wRz0kSZywADTRMk1>V79Dwf68R6MTE+B zl+}$$YPeb(gh*|gfZI5w&8*+tO%EEU{J=@w-I~ZvMc`ZR5gR_APWF<<0osj_)$#PVisBoz-8YgQE0aakNLDM5jLz`h!e7<%XSS<}LGa}2z zbIwd!=81}v$ia+L1gtGMnKPN)CSPZW&Wp5zB`OK?*+|}zqkwcden9?YIDmTfUw(gi z4P54QGSDqqOS{?=+33ow2|f%(r_7F2(AO z?z*VArMz+9{p@FX{Q4iE=hD2K_qCEksSW%(kE->a1$b?E6nxyPzf&WkZ!wPT z3e17rAg%#$PteYH@>b9b!ELTG8t;~6*yb}oV*qPqP=&f&(E-hbNd)dP(PxC|0%=az zbG1l73u@L1YEac!C;CaMFF7=k92o$9@*Hg}e|r`P{(H7T5Tk$w>#zi^COLy)`C%yJ zQn7mrskP)OHZt$F*)lDjg2KO^C*cBBf-^)IGf!3-~^Su;eJ7<49PM?g&x*qWTqZO%R6W_JQ7 zh)W!PQu*5~w-3?Z;?kCDbKkqBhGO7~u&f$HU`c+3-0A*vV!+t|BYKD5)&;(u|M-{i z+JEvw`(F#aCp}4hR(7U?QfrUYny3PNY1i+(5CKk^Gign^veBR8>(RSb-w5w`RnrcJ zg07FCH5OmuM*0Hyig0$Cbn1<6VC?Vw(%APaY?F=*(u`VG@4Od~&=z3l#@OtVRUt>F zTSBeAZV#eEmyOb-^(#}FUC0wg5d+jUxM4GF@n_fHCzS*~ zefKr~UXO#WO76Q_j5*W6Z%R}24ql)BS=RsM&;Lnw;Z;$G1m@prM%#K4@a}oEMvR5x z2#aaS<)?`+zVqI(l==J%fj)sn7H`c@>TB7oa>d)ZVnftaqS8uUoW=5h<4j8U9rOhX zM|+iS5b=f`L(seHc1v#QQ$em8XC^25HrM%Gur)+yDt9pg zH4kTO{)#4z1Fr70opbhbK;3yX+%USOTK9mr>OTQksMfYv&RVW>WTq!zC2f!=hz`MjGx-|Qmzy4j&l5__}!}lMtu>mWv7b4@Y zSl|b**|B5rGejgfv!UZ zM0p8-KNG-V^eTpDSSG#XFw_AK!`K%Qi4Ys46pq@(q_}hteDl0UGXh(+06oP@2%A}* zC2Ie@$c_bw>=w6vSWS7e=ho5Or0tZj z^D`;YchH}b+mSu^nN&UBiWsfE>n;+}4^DkH?nV0IIjXu2V3H(@bUqzSf%(&gU zaw;MB12#*eu%gEn2ouR`BL$_zkKU*-@`ybjp}ZBgaaSg#CnC+!Q>9Ida&%2zw9938 ztt891nmSE3x?Oh^H1PRvjL)MrxP~TwA18;HdlP`XxD>HXy4AjDBLthV(LVWchzP#i;HRudXuZkc=M+{oqw@VKuKxFno2@xl!Wp_H+;F+40G%%!D}6yERQ; zE`Rpp6?4ROxbD#oot=I4RSU-E<*h=K_5+~-UR?){vskfLH(k>75B`wZxu!moj77XZP=$a`cDX;*#z~s|}wKC0_mUdKta8`a@Gr{E(Zd)Wt2Q+6(g9q9%|} zXU-gbXHR|a?_W|lNg*zD`dwLNif-=2fo6Ki&s&iA9l?UwJ>b}5uxFXsp#mVQvBU@B z>&~QX#qKh? zJS~xK9gnGfb`LzUikE7AFq_L0EpcHso$7K8gLPZbm}>D~!^T)!t3pP0y9# z>J!A7oV|;+^FLnoUx@se{?iA4=6AT`Px}4e9WUI3-T|k>C@eC2bS{2}@6>CzEB1cJ z@|hTobZgt|ZTIJ-{3b3qGJDmLGS*DX75WDT&H}7*b#sZ2B?$ zzp+IB?7=<&3&<+4XqGAr_X7~lDWSuOvG?gw!ECdQ@!2~=x|=pnx~-G&${auV;^h*8 zUdnh43nBrS9-^Xj>;}CAN&UT!<3Ig%aQ&$iP8JeXX43|@hNw^-W6b!e>X$00Y%j#pPX`2(Se23KcgN0uG*k9zU zUB5g3@SnBkr}V!_sY=%|tJN3e5-IBAbhw93j?qXnZF)fGg-Bt;(dL7}=RzQmk zI}Dbv46I(G#tJ5N<@#NR&C6o$62_MjXLB&y0WpKn=TmS)n_>Ngv{B4I_K;6D8C4Mg zpce&4<^bxcEl_>QHp;EL>lLJrT5F`j{9BGc)#KlMbL-jS(>0~3cVR{8Xsg?GSNn3a z!6x?+#s3wW_BX2~pR&F7yvnyKiPt1qY^&XC2beVYYwp20Wio`yfaG@dMTs#0vCG3d znn4;fiGR9RicbLGM&h^yfRb~xYv*i#m{)e)P5CE-xs$@|>FftPyp9@FDx-!SK4sgG zmg?!Vq06y*m1PlUx;9u0VVX5{XGiNC#5hxUU&`wA24}(>g(UE<^Q?FL+Unr zq8>3<8n;^PzhxS37$WZ&k-+meS!M~ox zAN=M=Z*&Chf>I?u;g^ z-YUk-i(LF21^so;>VbM-$w2>A&=^|NattYD7vOxyTCfedG46wU7VxEdJm(-|VC}R>z*< zhX;O7Nomh&#->yN+p^+|Z```R5h~>OiYe4BK+-k#SnHHZCN`8h&@l z(YM|oY~zkc>IisXJ|%vgXPL6KinWa-I_=aGd4R`t#o$h9x(eDmnS27h*_$iAoK2DkH-IM#YIGZYJd7k|7~vlPG?Zh zleR8Hx7II2BEsAV3lRej5lZOivO~Y|*{>%3Cme8Y^KvtT866T4)bs>nhs{u{s8J-f zu&mPc&Ibk`{A$gCNK`)&z%HR~5q5alxYNl>!%X11KkMt?`0Q7c{sYcLuh)mqOJ6S= zI=Hqc*AANfYQ;rF4*l5v^EY*OXGUYZnR7l~(>Mc z(8)6Nn)%y)^1&qC_M&H-78>9>aQE{yD%~@h3Ak`g5C%*#D~L-agrPcrb?ya?=mfS4 zg*u%uuC-VpW}-|>+x=k4=cp|tifw!Go&!(vbc1IxuUnNoq8q`$Cyc~^A?9|Qjx>!4 zQS0sWZBv;^jQ58OEreKN21;1icWkD}Oghn?ZUOX4KjrE!eF+EdkQNoAdMou!U0QLKXHob2$>g+bS1*43t7 z5JC@XYLaC?MNtMEyz}y+DN$c{Swyzbzik(;Lu7C3)gT644*Yc+XNQH5Vo z3+sLV&@P0CI+ki*Rx2@&Q=F6>l0qd(3{x-Xqo?_36fTwE1Ermh3Yr2ibzJwV{mYwzvHodxGo{C0@0GX&{c0j zczX4_p4FpYKMBv!kRW+rhMSSy&l%|Tq4UbQ(FkyDaEB03k7#|lug`||d`@c8d-3j) zks37NykayM9F@nxnsh6N7dC~cCW>@<(i@m93 zeo1!>CGTbWyOi|^+aEQ-+nIp{ROMmAm@S{&Z!GU>?cIHdN}tqUh;-GU4p52rZo0tD zC7?ir=PUWw%-DYweD&BvU-BCsVb~P>7znag;SnIEn`}KW<)=+W(Q!jn!>IUS)6J$e z$$$uurKixL!zW0q2Fqk(YbtmU!zL}R#VWL8aC$HB@V+~jm{@wRo?}_EE4eOxRK3^u zZ#^<$iDX5OFmu~-f0+ORf!_jIts|h-Z6NI@inx#xofctG`Cv^g4{F9X@C+v;q>SN) zJv=uL+*i;)-!2Tt-b}W4No0D=kDZQZqKhd$_?!V>)q39}{+aHjJwa{#r~^EzAD^g7 zRjqT;YD79OqjZN0Xvv+vd6h>ldLQS)y|vM`av3cp{6~N}vjIi1n91kW{gp5spK7Gn z{ya?vlot}?a-&2#b50hkA%!JS&$uK~h*SBOr+@$vgTp3YUmpMRTX6pa_nS`4oQt&j z@dD~)S}shNY8H%O_{I!|dNRu%{Q5>8RCZ?WOsiT5lr0}u-`Fga!kR%h6(})rx|U`r z0{aX>QIzDb)-b{zOii5HR*iKQ?!mm3B0A6V)|VrM8AXna8?#{aP(hCDLd}?&FR?%wNuRVfGn9;C;-oPB@T*~^S#S4)nj$jjc z#uUm!IM<;d2ncl54+@~``3%J5WLjOA^V^m$DtzMTD9}+48smkorG_8?sEOLe3N5xx zSKXllwP$y>Mot?X;1%`M?iH~Q>MAFZJ}+cK5ysR)S~A>Nh6`S~f+oU@D++z}lZrn0X&|y@8eJ#%uJi8{l)vBKlgUbIpYFKt95vC;5?@wj za;Er=wkN~~^BEH}X=I%pj7P-;F&v-FP-sNR=X!$z<8#Rc1Z3Pvr;>`2aLp1M+QNzG z;>ecth!D4c&)@p<>7R7aW73rjSp~s7=}MOy4cuNHM|)Iw;&a`kpn4AvrPSrsuz~mC zKONibULM;HpBqCdClK)QsSwS2jQ7TT=N(}4eRQd+XrM=qN#WGk@c@SyYb~e%DrgAj z*QlAgO&%*cdb7#)tFnj%B|tA))+Jd$q~NIlZjXWS!cJtFDEoGHVo}2|F(b)sOTp;xz<&jd-pWtM#@9uYdEs!((W89<^rES0YhZCgEh@JP&p42a>}L<>Py z4zIDsa=Y+&;nhz1n94+uHL$uG`+}xsef`QDpO%Jh+H#(Rw);`InYVg%6M64UD3na#Jvixg&>R>1IdHnPU zhkO<}A4n=J8Ll5@Shp^&8m9B9fRi%|R3D*KK84B%GCtC(qiUL`&Pr|z2y#Inv5L6F zN+Q|YXR;l^PJ>!@pQyF5E*amSz)Ioi8RBLtTo7HpqSm(MX3uv%6__5iF#P~!T4A}; zu*S-rtX|`UTi9lJ1n#`OF*#PcLB$P>Ou@}84-uwkazFz!sisPLwVhB@=#ng3v6<~W zl8R}?z;u9}6Xi|znI3;%)Z+HWbSGfn!rBcs#oC?C3@qX*@xsn~Q%C7s^a2LL}+P+@?rUH4KGrqg@!T2FVDuj#6lU>2S5WN!e0 zMXR$5ERs9{(M!gWTJN`4(+gdLa6|TErUt1X*zE{v-fVgYEW@#7DN51BQ+RfboU*p# zlS-^DGwgiwn5q3}Y?)&n*XT*{ExqNwMXJi-!4b{_-YqQn3lXT6z>Vm6KLwK5<$50+KjjZRk*Ah;(iw zI&V5`08Zpvo(9VwWKGxvgoZT#J+6UgEwQQ^gsKKcvN{6i89ov=pp#!N*iLWFja^#Q zwR|D+?Q~$$w?cy?0KE795UcAEPuo^@!LJv((g+I;OGvxRsb3-`JbF4^mOV4roLsMv z1vUplGfvf1ID2kheg0^g;~sm#tA8>Ge=$J9ok~%m4lbi7%{u=YPgY=G+tV}zr3 zLin2*p4g%~MSRZPt4!=kYCcv5+K6Cay{`c=KmzCGqGF%T!)B@5r_z?ZztyxhzccPX zi9cWBToH4c>>&Wa2>Nn4ct5>q;=N<|cmkoq&dl=G1$t69q4FOOJ+82lJp-a07wx7Z zwPk{>c<p_ z;pR<%E8o?%{IIt_HHb8Ne|yVK;wmEoolxh}N;y41$N_6v24Qph^bAs)bT=_A({w#^ z9a<{j>Bh5MzHzU8Rb5INc}8DOvE%qE4nTe33# zNl{r}U4gEw6o=?oS$xf{YQJBYh_10*3+bHf1+gH{h81EZpKe{=plD&O#T(5+NQI+A zlg%^g4jzV5k6=?F0>g0qbmry(Dks=x|Df{=5ryW#iW^j)vV>BYfg*u4rkewj4THig zk5rkSsqYABMFo9D4ji;_x#gZuLbM6BI01%16vMJ|jEp}68+LVwj%K=jq;DO{m@TuA z^c~5M$#3$?!*uzYKkM$2F&kCmt#H7Qok?ePyR)JGm#J4apvG;tZB7otu{@AnqZte> z?r1-RE6;#oUt&z_8QOl2GR;W^i9DTi+3%0=I5U24<3TxlAdetn4bkcqGi4qsr_)6#Bm*II%&tAwzJf>ryLNY#uti$YlF%%Ub^G&Ds|tdP@*r27OGOhg)r3aHdhJX9Jl3FLbgG?5+2;9UssM+J$NWANN6S_1uyR1%iRZ8dMP7tJ4s(AaoT~g~F<)Y(v96*-e!lhm31j zvGf{tdW4s2L&<7y*is3U)<=Ku+cdX1x^TjkfV?-i8!~J}b@#G~pjf4=(vdkT2C?LLbIV5YW8V5-t`N=hAP9l0vQL;TRw`C?k^v0m61 z!bCZKveWlksQvC&UaV}KL+`N%tf`>tOoN>K7b0=()BKn;c`Fvtt1412fT`2WG;xUw^GsD0RfdPML831Pqunr#h!s`F_WU=f`>&#``VK@JhwgO^p*{U|zTe^AllZ2fejjZgx928fJW7lNZ zzQN#QL1R7_Pp!xiX;w1>XM5MOy=JQ`cB>i@U@`H=^^*#7L!bS(D*w71KY0#W{*kN($m9G1njf2+p|;H?(UN~ctpbnfWPCXmrvx@pBPm58Gt zkQmsoaplwLFMgf;`+icJeSYc+Qc1q`fqD(RqbzeGxUUAh$?#=%#P1#3gR*pR75g|B ze?6anZ;BCqUQ%B3;m9Kof%%~EmSWN!7*^?ph>OOBzp6@O>0HSzu15Y5(nQ9XM^nvu zM9OyXTEP^Ig^wSt>z9?UtBL6J|6*jeCpyX2$=+8iMlh$buZ~x=Es9&s{Ned$17#Ny z*Zm#Bj_ehC_eC;_Y7e{+u`io