From d87d4a3b05bef49cde435bdc76e2594770cdca12 Mon Sep 17 00:00:00 2001 From: Shivani Panchiwala <72301600+panchiwalashivani@users.noreply.github.com> Date: Fri, 9 Oct 2020 14:39:39 +0530 Subject: [PATCH] Create emotion_detection system Hi, I have created an emotion detection system. it's a new idea for your project, if you like it then accept my request and merge with your data. --- emotion_detection system | 181 +++++++++++++++++++++++++++++++++++++++ 1 file changed, 181 insertions(+) create mode 100644 emotion_detection system diff --git a/emotion_detection system b/emotion_detection system new file mode 100644 index 0000000..29985e9 --- /dev/null +++ b/emotion_detection system @@ -0,0 +1,181 @@ +########## train.py ################ + +import sys, os +import pandas as pd +import numpy as np + +from keras.models import Sequential +from keras.layers import Dense, Dropout, Activation, Flatten +from keras.layers import Conv2D, MaxPooling2D, BatchNormalization,AveragePooling2D +from keras.losses import categorical_crossentropy +from keras.optimizers import Adam +from keras.regularizers import l2 +from keras.utils import np_utils +# pd.set_option('display.max_rows', 500) +# pd.set_option('display.max_columns', 500) +# pd.set_option('display.width', 1000) + +df=pd.read_csv('fer2013.csv') + +# print(df.info()) +# print(df["Usage"].value_counts()) + +# print(df.head()) +X_train,train_y,X_test,test_y=[],[],[],[] + +for index, row in df.iterrows(): + val=row['pixels'].split(" ") + try: + if 'Training' in row['Usage']: + X_train.append(np.array(val,'float32')) + train_y.append(row['emotion']) + elif 'PublicTest' in row['Usage']: + X_test.append(np.array(val,'float32')) + test_y.append(row['emotion']) + except: + print(f"error occured at index :{index} and row:{row}") + + +num_features = 64 +num_labels = 7 +batch_size = 64 +epochs = 30 +width, height = 48, 48 + + +X_train = np.array(X_train,'float32') +train_y = np.array(train_y,'float32') +X_test = np.array(X_test,'float32') +test_y = np.array(test_y,'float32') + +train_y=np_utils.to_categorical(train_y, num_classes=num_labels) +test_y=np_utils.to_categorical(test_y, num_classes=num_labels) + +#cannot produce +#normalizing data between oand 1 +X_train -= np.mean(X_train, axis=0) +X_train /= np.std(X_train, axis=0) + +X_test -= np.mean(X_test, axis=0) +X_test /= np.std(X_test, axis=0) + +X_train = X_train.reshape(X_train.shape[0], 48, 48, 1) + +X_test = X_test.reshape(X_test.shape[0], 48, 48, 1) + +# print(f"shape:{X_train.shape}") +##designing the cnn +#1st convolution layer +model = Sequential() + +model.add(Conv2D(64, kernel_size=(3, 3), activation='relu', input_shape=(X_train.shape[1:]))) +model.add(Conv2D(64,kernel_size= (3, 3), activation='relu')) +# model.add(BatchNormalization()) +model.add(MaxPooling2D(pool_size=(2,2), strides=(2, 2))) +model.add(Dropout(0.5)) + +#2nd convolution layer +model.add(Conv2D(64, (3, 3), activation='relu')) +model.add(Conv2D(64, (3, 3), activation='relu')) +# model.add(BatchNormalization()) +model.add(MaxPooling2D(pool_size=(2,2), strides=(2, 2))) +model.add(Dropout(0.5)) + +#3rd convolution layer +model.add(Conv2D(128, (3, 3), activation='relu')) +model.add(Conv2D(128, (3, 3), activation='relu')) +# model.add(BatchNormalization()) +model.add(MaxPooling2D(pool_size=(2,2), strides=(2, 2))) + +model.add(Flatten()) + +#fully connected neural networks +model.add(Dense(1024, activation='relu')) +model.add(Dropout(0.2)) +model.add(Dense(1024, activation='relu')) +model.add(Dropout(0.2)) + +model.add(Dense(num_labels, activation='softmax')) + +# model.summary() + +#Compliling the model +model.compile(loss=categorical_crossentropy, + optimizer=Adam(), + metrics=['accuracy']) + +#Training the model +model.fit(X_train, train_y, + batch_size=batch_size, + epochs=epochs, + verbose=1, + validation_data=(X_test, test_y), + shuffle=True) + + +#Saving the model to use it later on +fer_json = model.to_json() +with open("fer.json", "w") as json_file: + json_file.write(fer_json) +model.save_weights("fer.h5") + + + +############# videotester.py ############## + +import os +import cv2 +import numpy as np +from keras.models import model_from_json +from keras.preprocessing import image + +#load model +model = model_from_json(open("fer.json", "r").read()) +#load weights +model.load_weights('fer.h5') + + +face_haar_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') + + +cap=cv2.VideoCapture(0) + +while True: + ret,test_img=cap.read()# captures frame and returns boolean value and captured image + if not ret: + continue + gray_img= cv2.cvtColor(test_img, cv2.COLOR_BGR2GRAY) + + faces_detected = face_haar_cascade.detectMultiScale(gray_img, 1.32, 5) + + + for (x,y,w,h) in faces_detected: + cv2.rectangle(test_img,(x,y),(x+w,y+h),(255,0,0),thickness=7) + roi_gray=gray_img[y:y+w,x:x+h]#cropping region of interest i.e. face area from image + roi_gray=cv2.resize(roi_gray,(48,48)) + img_pixels = image.img_to_array(roi_gray) + img_pixels = np.expand_dims(img_pixels, axis = 0) + img_pixels /= 255 + + predictions = model.predict(img_pixels) + + #find max indexed array + max_index = np.argmax(predictions[0]) + + emotions = ('angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral') + predicted_emotion = emotions[max_index] + + cv2.putText(test_img, predicted_emotion, (int(x), int(y)), cv2.FONT_HERSHEY_SIMPLEX, 1, (0,0,255), 2) + + resized_img = cv2.resize(test_img, (1000, 700)) + cv2.imshow('Facial emotion analysis ',resized_img) + + + + if cv2.waitKey(10) == ord('q'):#wait until 'q' key is pressed + break + +cap.release() +cv2.destroyAllWindows + +