forked from JusperLee/UtterancePIT-Speech-Separation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
145 lines (121 loc) · 4.98 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import os
import random
import pickle
import numpy as np
import torch as th
from torch.utils.data import DataLoader, Dataset
from torch.nn.utils.rnn import pack_sequence, pad_sequence
from utils import parse_scps, stft, apply_cmvn, EPSILON, get_logger
logger = get_logger(__name__)
class SpectrogramReader(object):
"""
Wrapper for short-time fourier transform of dataset
"""
def __init__(self, wave_scp, **kwargs):
if not os.path.exists(wave_scp):
raise FileNotFoundError("Could not find file {}".format(wave_scp))
self.stft_kwargs = kwargs
self.wave_dict = parse_scps(wave_scp)
self.wave_keys = [key for key in self.wave_dict.keys()]
logger.info(
"Create SpectrogramReader for {} with {} utterances".format(
wave_scp, len(self.wave_dict)))
def __len__(self):
return len(self.wave_dict)
def __contains__(self, key):
return key in self.wave_dict
# stft
def _load(self, key):
return stft(self.wave_dict[key], **self.stft_kwargs)
'''
# sequential index
def __iter__(self):
for key in self.wave_dict:
yield key, self._load(key)
'''
# random index
def __getitem__(self, key):
if key not in self.wave_dict:
raise KeyError("Could not find utterance {}".format(key))
return self._load(key)
class Datasets(object):
def __init__(self, mix_reader, target_reader_list, mvn_dict='cmvn.dict', apply_log=True):
self.mix_reader = mix_reader
self.target_reader_list = target_reader_list
self.key_list = mix_reader.wave_keys
self.num_spks = len(target_reader_list)
self.mvn_dict = mvn_dict
self.apply_log = apply_log
if mvn_dict:
logger.info("Using cmvn dictionary from {}".format(mvn_dict))
with open(mvn_dict, "rb") as f:
self.mvn_dict = pickle.load(f)
def __len__(self):
return len(self.mix_reader)
def _has_target(self, key):
for target in self.target_reader_list:
if key not in target:
return False
return True
def _transform(self, mixture_specs, targets_specs_list):
"""
Transform original spectrogram
If mixture_specs is a complex object, it means PAM will be used for training
It can be configured in .yaml, egs: apply_abs=false to produce complex results
If mixture_specs is real, we will using AM(ratio mask)
Arguments:
mixture_specs: non-log complex/real spectrogram
targets_specs_list: list of non-log complex/real spectrogram for each target speakers
Returns:
python dictionary with four attributes:
num_frames: length of current utterance
feature: input feature for networks, egs: log spectrogram + cmvn
source_attr: a dictionary with at most 2 keys: spectrogram and phase(for PSM), each contains a tensor
target_attr: same keys like source_attr, each keys correspond to a tensor list
"""
# NOTE: mixture_specs may be complex or real
input_spectra = np.abs(mixture_specs) if np.iscomplexobj(
mixture_specs) else mixture_specs
# apply_log and cmvn, for nnet input
if self.apply_log:
input_spectra = np.log(np.maximum(input_spectra, EPSILON))
if self.mvn_dict:
input_spectra = apply_cmvn(input_spectra, self.mvn_dict)
# using dict to pack infomation needed in loss
source_attr = {}
target_attr = {}
if np.iscomplexobj(mixture_specs):
source_attr["spectrogram"] = th.tensor(
np.abs(mixture_specs), dtype=th.float32)
target_attr["spectrogram"] = [
th.tensor(np.abs(t), dtype=th.float32)
for t in targets_specs_list
]
source_attr["phase"] = th.tensor(
np.angle(mixture_specs), dtype=th.float32)
target_attr["phase"] = [
th.tensor(np.angle(t), dtype=th.float32)
for t in targets_specs_list
]
else:
source_attr["spectrogram"] = th.tensor(
mixture_specs, dtype=th.float32)
target_attr["spectrogram"] = [
th.tensor(t, dtype=th.float32) for t in targets_specs_list
]
return {
"num_frames": mixture_specs.shape[0],
"feature": th.tensor(input_spectra, dtype=th.float32),
"source_attr": source_attr,
"target_attr": target_attr
}
def __getitem__(self, index):
key = self.key_list[index]
mix = self.mix_reader[key]
if self._has_target(key):
ref = [reader[key] for reader in self.target_reader_list]
else:
raise ValueError('Not have Target Data')
mix = mix.astype(np.float32)
ref = [spk.astype(np.float32) for spk in ref]
return self._transform(mix,ref)