-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathrun_preprocess_direct_ag_news.py
44 lines (35 loc) · 1.33 KB
/
run_preprocess_direct_ag_news.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import json
import fire
from datasets import load_dataset
def main(data_path="samples/inputs_direct_ag_news.json", sample=True):
dataset = load_dataset("ag_news")
label_words = ["World", "Sports", "Business", "Science and technology"]
# Sample demonstrations
demonstrations = dataset["train"].train_test_split(
train_size=4, seed=42, stratify_by_column="label"
)["train"]
# Create demonstration prompt
prompt = ""
for demo in demonstrations:
input_prompt = f"""Article: {demo["text"]}\n"""
label_prompt = f"Category: {label_words[demo['label']]}\n"
prompt += f"""{input_prompt}{label_prompt}"""
# Create prompt and completion
data = []
test_dataset = dataset["test"].select([0, 1, 2, 3]) if sample else dataset["test"]
for test in test_dataset:
data.append(
{
"prompt": prompt + "Article: {text}\nCategory:",
"completion": "{label_word}",
"text": test['text'],
"label_words": label_words,
"ground_truth": label_words[test["label"]],
}
)
# Save data
data = sorted(data, key=lambda x: -len(x["prompt"] + x["completion"]))
with open(data_path, "w") as f:
json.dump(data, f, indent=2)
if __name__ == "__main__":
fire.Fire(main)