-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_manipulator0725.py
400 lines (345 loc) · 14.7 KB
/
main_manipulator0725.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
import torch
import torch.nn as nn
from torch.autograd import Variable
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
from get_G import G_mtx
from get_M import M_mtx
from get_C import C_mtx
n = 7 # DOF
sim_FT = 3
sim_period = 0.001
sam=int(sim_FT/sim_period)
tspan = np.linspace(0,sim_FT, sam+1)
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.hidden_layer1 = nn.Linear(1,5)
self.hidden_layer2 = nn.Linear(5,5)
self.hidden_layer3 = nn.Linear(5,5)
self.hidden_layer4 = nn.Linear(5,5)
self.hidden_layer5 = nn.Linear(5,5)
self.output_layer = nn.Linear(5,1)
def forward(self, t):
inputs = torch.cat([t],axis=1) # combined two arrays of 1 columns each to one array of 2 columns
layer1_out = torch.sigmoid(self.hidden_layer1(inputs))
layer2_out = torch.sigmoid(self.hidden_layer2(layer1_out))
layer3_out = torch.sigmoid(self.hidden_layer3(layer2_out))
layer4_out = torch.sigmoid(self.hidden_layer4(layer3_out))
layer5_out = torch.sigmoid(self.hidden_layer5(layer4_out))
output = self.output_layer(layer5_out) ## For regression, no activation is used in output layer
return output
### (2) Model
net_q1 = Net()
net_q2 = Net()
net_q3 = Net()
net_q4 = Net()
net_q5 = Net()
net_q6 = Net()
net_q7 = Net()
net_q1 = net_q1.to(device)
net_q2 = net_q2.to(device)
net_q3 = net_q3.to(device)
net_q4 = net_q4.to(device)
net_q5 = net_q5.to(device)
net_q6 = net_q6.to(device)
net_q7 = net_q7.to(device)
mse_cost_function = torch.nn.MSELoss() # Mean squared error
optimizer1 = torch.optim.Adam(net_q1.parameters())
optimizer2 = torch.optim.Adam(net_q2.parameters())
optimizer3 = torch.optim.Adam(net_q3.parameters())
optimizer4 = torch.optim.Adam(net_q4.parameters())
optimizer5 = torch.optim.Adam(net_q5.parameters())
optimizer6 = torch.optim.Adam(net_q6.parameters())
optimizer7 = torch.optim.Adam(net_q7.parameters())
# --------------------------------------------------------------------0629----------------------------------------------
# q_bc = np.random.uniform(low=-np.pi/2, high=np.pi/2, size=(500,1))
t_bc = np.zeros((np.size(tspan),1))
def plant(x, u1, M, C, G):
G = G.tolist()
G = [G[0][0],G[1][0],G[2][0],G[3][0],G[4][0],G[5][0],G[6][0]]
G = np.array(G)
C = C.tolist()
C = [C[0][0], C[1][0], C[2][0], C[3][0], C[4][0], C[5][0], C[6][0]]
C = np.array(C)
# Case 2: Compensating Real Dynamics
val2 = np.matmul(np.linalg.inv(M),u1)
dxdt = [x[7],x[8],x[9],x[10],x[11],x[12],x[13],val2[0],val2[1],val2[2],val2[3],val2[4],val2[5],val2[6]]
arr_dxdt = np.array(dxdt)
return arr_dxdt
def rk4(x,tau,T,M,C,G):
k1=plant(x,tau,M,C,G)*T
k2=plant(x+k1*0.5,tau,M,C,G)*T
k3=plant(x+k2*0.5,tau,M,C,G)*T
k4=plant(x+k3,tau,M,C,G)*T
dx = x + ((k1+k4)/6+(k2+k3)/3)
return dx
# num_data_q = 2000
# t_bc = np.zeros((num_data_q,1))
# compute u based on BC
qt_temp = []
qdt_temp = []
error_q_qt = []
error_qd_qt = []
q = [[0,0,0,0,0,0,0,0,0,0,0,0,0,0]]
q_t = [0, 0, 1.57, 0, 0, 0, 0]
qd_t = [0, 0, 0, 0, 0, 0, 0]
Kp = np.array([20, 15, 5, 1, 1, 1, 1])
Kd = np.sqrt(Kp)*0.5
q1_data = np.array([q[0][0]])
q2_data = np.array([q[0][1]])
q3_data = np.array([q[0][2]])
q4_data = np.array([q[0][3]])
q5_data = np.array([q[0][4]])
q6_data = np.array([q[0][5]])
q7_data = np.array([q[0][6]])
for i in range(0,np.size(tspan)-1):
qt_temp.append(q_t)
qdt_temp.append(qd_t)
arr_q = np.array(q[i])
arr_q_t = np.array(q_t)
arr_qd_t = np.array(qd_t)
arr_q_e = arr_q_t - arr_q[0:n]
arr_qd_e = arr_qd_t - arr_q[n:2*n]
error_q = arr_q[0:n] - arr_q_t
error_qd = arr_q[n:2*n] - arr_qd_t
error_q = error_q.tolist()
error_qd = error_qd.tolist()
error_q_qt.append(error_q)
error_qd_qt.append(error_qd)
M = M_mtx(arr_q)
C = C_mtx(arr_q[0:n],arr_q[n:2*n])
G = G_mtx(arr_q)
tau = Kp * arr_q_e + Kd * arr_qd_e
tau = np.array(tau)
q_value = rk4(arr_q, tau, sim_period, M, C, G)
q_value = q_value.tolist()
q.append(q_value)
arr_q_sol = np.array(q_value)
q1_data = np.vstack([q1_data, q_value[0]])
q2_data = np.vstack([q2_data, q_value[1]])
q3_data = np.vstack([q3_data, q_value[2]])
q4_data = np.vstack([q4_data, q_value[3]])
q5_data = np.vstack([q5_data, q_value[4]])
q6_data = np.vstack([q6_data, q_value[5]])
q7_data = np.vstack([q7_data, q_value[6]])
#
### (3) Training / Fitting
iterations = 1000
previous_validation_loss = 99999999.0
q_temp = np.zeros([np.size(tspan),7])
qd_temp = np.zeros((np.size(tspan),7))
qdd_temp = np.zeros((np.size(tspan),7))
q_cal_temp = np.zeros((np.size(tspan),7))
f_q1 = np.zeros((np.size(tspan),1))
f_q2 = np.zeros((np.size(tspan),1))
f_q3 = np.zeros((np.size(tspan),1))
f_q4 = np.zeros((np.size(tspan),1))
f_q5 = np.zeros((np.size(tspan),1))
f_q6 = np.zeros((np.size(tspan),1))
f_q7 = np.zeros((np.size(tspan),1))
loss_temp = np.array([0])
for epoch in range(iterations):
optimizer1.zero_grad() # to make the gradients zero
optimizer2.zero_grad() # to make the gradients zero
optimizer3.zero_grad() # to make the gradients zero
optimizer4.zero_grad() # to make the gradients zero
optimizer5.zero_grad() # to make the gradients zero
optimizer6.zero_grad() # to make the gradients zero
optimizer7.zero_grad() # to make the gradients zero
# Loss based on boundary conditions
pt_t_bc = Variable(torch.from_numpy(t_bc).float(), requires_grad=False).to(device)
pt_q1_bc = Variable(torch.from_numpy(q1_data).float(), requires_grad=False).to(device)
pt_q2_bc = Variable(torch.from_numpy(q2_data).float(), requires_grad=False).to(device)
pt_q3_bc = Variable(torch.from_numpy(q3_data).float(), requires_grad=False).to(device)
pt_q4_bc = Variable(torch.from_numpy(q4_data).float(), requires_grad=False).to(device)
pt_q5_bc = Variable(torch.from_numpy(q5_data).float(), requires_grad=False).to(device)
pt_q6_bc = Variable(torch.from_numpy(q6_data).float(), requires_grad=False).to(device)
pt_q7_bc = Variable(torch.from_numpy(q7_data).float(), requires_grad=False).to(device)
net_q1_out = net_q1(pt_t_bc) # output of u(x,t)
net_q2_out = net_q2(pt_t_bc) # output of u(x,t)
net_q3_out = net_q3(pt_t_bc) # output of u(x,t)
net_q4_out = net_q4(pt_t_bc) # output of u(x,t)
net_q5_out = net_q5(pt_t_bc) # output of u(x,t)
net_q6_out = net_q6(pt_t_bc) # output of u(x,t)
net_q7_out = net_q7(pt_t_bc) # output of u(x,t)
mse_q1 = mse_cost_function(net_q1_out, pt_q1_bc)
mse_q2 = mse_cost_function(net_q2_out, pt_q2_bc)
mse_q3 = mse_cost_function(net_q3_out, pt_q3_bc)
mse_q4 = mse_cost_function(net_q4_out, pt_q4_bc)
mse_q5 = mse_cost_function(net_q5_out, pt_q5_bc)
mse_q6 = mse_cost_function(net_q6_out, pt_q6_bc)
mse_q7 = mse_cost_function(net_q7_out, pt_q7_bc)
mse_q = mse_q1 + mse_q2 + mse_q3 + mse_q4 + mse_q5 + mse_q6 + mse_q7
# Loss based on PDE
t_collocation = np.random.uniform(low=0.0, high=1.0, size=(np.size(tspan), 1))
all_zeros = np.zeros((np.size(tspan), 1))
pt_t_collocation = Variable(torch.from_numpy(t_collocation).float(), requires_grad=True).to(device)
pt_all_zeros = Variable(torch.from_numpy(all_zeros).float(), requires_grad=False).to(device)
net_q1_vec = net_q1(pt_t_collocation)
net_q2_vec = net_q2(pt_t_collocation)
net_q3_vec = net_q3(pt_t_collocation)
net_q4_vec = net_q4(pt_t_collocation)
net_q5_vec = net_q5(pt_t_collocation)
net_q6_vec = net_q6(pt_t_collocation)
net_q7_vec = net_q7(pt_t_collocation)
net_q1_vec_t = torch.autograd.grad(net_q1_vec.sum(), pt_t_collocation, create_graph=True)[0]
net_q2_vec_t = torch.autograd.grad(net_q2_vec.sum(), pt_t_collocation, create_graph=True)[0]
net_q3_vec_t = torch.autograd.grad(net_q3_vec.sum(), pt_t_collocation, create_graph=True)[0]
net_q4_vec_t = torch.autograd.grad(net_q4_vec.sum(), pt_t_collocation, create_graph=True)[0]
net_q5_vec_t = torch.autograd.grad(net_q5_vec.sum(), pt_t_collocation, create_graph=True)[0]
net_q6_vec_t = torch.autograd.grad(net_q6_vec.sum(), pt_t_collocation, create_graph=True)[0]
net_q7_vec_t = torch.autograd.grad(net_q7_vec.sum(), pt_t_collocation, create_graph=True)[0]
net_q1_vec_tt = torch.autograd.grad(net_q1_vec_t.sum(), pt_t_collocation, create_graph=True)[0]
net_q2_vec_tt = torch.autograd.grad(net_q2_vec_t.sum(), pt_t_collocation, create_graph=True)[0]
net_q3_vec_tt = torch.autograd.grad(net_q3_vec_t.sum(), pt_t_collocation, create_graph=True)[0]
net_q4_vec_tt = torch.autograd.grad(net_q4_vec_t.sum(), pt_t_collocation, create_graph=True)[0]
net_q5_vec_tt = torch.autograd.grad(net_q5_vec_t.sum(), pt_t_collocation, create_graph=True)[0]
net_q6_vec_tt = torch.autograd.grad(net_q6_vec_t.sum(), pt_t_collocation, create_graph=True)[0]
net_q7_vec_tt = torch.autograd.grad(net_q7_vec_t.sum(), pt_t_collocation, create_graph=True)[0]
q1 = net_q1_vec.detach().cpu().numpy()
q2 = net_q2_vec.detach().cpu().numpy()
q3 = net_q3_vec.detach().cpu().numpy()
q4 = net_q4_vec.detach().cpu().numpy()
q5 = net_q5_vec.detach().cpu().numpy()
q6 = net_q6_vec.detach().cpu().numpy()
q7 = net_q7_vec.detach().cpu().numpy()
q1_t = net_q1_vec_t.detach().cpu().numpy()
q2_t = net_q2_vec_t.detach().cpu().numpy()
q3_t = net_q3_vec_t.detach().cpu().numpy()
q4_t = net_q4_vec_t.detach().cpu().numpy()
q5_t = net_q5_vec_t.detach().cpu().numpy()
q6_t = net_q6_vec_t.detach().cpu().numpy()
q7_t = net_q7_vec_t.detach().cpu().numpy()
q1_tt = net_q1_vec_tt.detach().cpu().numpy()
q2_tt = net_q1_vec_tt.detach().cpu().numpy()
q3_tt = net_q3_vec_tt.detach().cpu().numpy()
q4_tt = net_q4_vec_tt.detach().cpu().numpy()
q5_tt = net_q5_vec_tt.detach().cpu().numpy()
q6_tt = net_q6_vec_tt.detach().cpu().numpy()
q7_tt = net_q7_vec_tt.detach().cpu().numpy()
## 22.07.05 ###############################################################################
for j in range(0,np.size(tspan)):
q_temp[j,0] = q1[j,0]
q_temp[j,1] = q2[j,0]
q_temp[j,2] = q3[j,0]
q_temp[j,3] = q4[j,0]
q_temp[j,4] = q5[j,0]
q_temp[j,5] = q6[j,0]
q_temp[j,6] = q7[j,0]
qd_temp[j,0] = q1_t[j,0]
qd_temp[j,1] = q2_t[j,0]
qd_temp[j,2] = q3_t[j,0]
qd_temp[j,3] = q4_t[j,0]
qd_temp[j,4] = q5_t[j,0]
qd_temp[j,5] = q6_t[j,0]
qd_temp[j,6] = q7_t[j,0]
qdd_temp[j,0] = q1_tt[j,0]
qdd_temp[j,1] = q2_tt[j,0]
qdd_temp[j,2] = q3_tt[j,0]
qdd_temp[j,3] = q4_tt[j,0]
qdd_temp[j,4] = q5_tt[j,0]
qdd_temp[j,5] = q6_tt[j,0]
qdd_temp[j,6] = q7_tt[j,0]
M = M_mtx(q_temp[j])
G = G_mtx(q_temp[j])
C = C_mtx(q_temp[j], qd_temp[j])
tau = Kp * (q_temp[j]-arr_q_t) + Kd * (qd_temp[j]- arr_qd_t)
tau = np.array([[tau[0]], [tau[1]], [tau[2]], [tau[3]], [tau[4]], [tau[5]], [tau[6]]])
# u_t = torch.autograd.grad(u.sum(), t, create_graph=True)[0]
q_cal_temp[j] = qdd_temp[j] - (np.linalg.inv(M) @ (tau - C - G)).T[0]
f_q1[j] = q_cal_temp[j,0]
f_q2[j] = q_cal_temp[j,1]
f_q3[j] = q_cal_temp[j,2]
f_q4[j] = q_cal_temp[j,3]
f_q5[j] = q_cal_temp[j,4]
f_q6[j] = q_cal_temp[j,5]
f_q7[j] = q_cal_temp[j,6]
f_q1_out = torch.from_numpy(f_q1).float().to(device)
f_q2_out = torch.from_numpy(f_q2).float().to(device)
f_q3_out = torch.from_numpy(f_q3).float().to(device)
f_q4_out = torch.from_numpy(f_q4).float().to(device)
f_q5_out = torch.from_numpy(f_q5).float().to(device)
f_q6_out = torch.from_numpy(f_q6).float().to(device)
f_q7_out = torch.from_numpy(f_q7).float().to(device)
mse_f1 = mse_cost_function(f_q1_out, pt_all_zeros)
mse_f2 = mse_cost_function(f_q2_out, pt_all_zeros)
mse_f3 = mse_cost_function(f_q3_out, pt_all_zeros)
mse_f4 = mse_cost_function(f_q4_out, pt_all_zeros)
mse_f5 = mse_cost_function(f_q5_out, pt_all_zeros)
mse_f6 = mse_cost_function(f_q6_out, pt_all_zeros)
mse_f7 = mse_cost_function(f_q7_out, pt_all_zeros)
# mse_f = mse_f1 + mse_f2 + mse_f3 + mse_f4 + mse_f5 + mse_f6 + mse_f7
mse_f = mse_f1 + mse_f2 + mse_f3 + mse_f4 + mse_f5 + mse_f6 + mse_f7
# Combining the loss functions
loss = mse_q + mse_f
loss.backward() # This is for computing gradients using backward propagation
optimizer1.step() # This is equivalent to : theta_new = theta_old - alpha * derivative of J w.r.t theta
optimizer2.step()
optimizer3.step()
optimizer4.step()
optimizer5.step()
optimizer6.step()
optimizer7.step()
with torch.autograd.no_grad():
print(epoch, "Traning Loss:", loss.data)
loss_temp = np.vstack([loss_temp,np.array(loss.data.cpu())])
np.delete(loss_temp,0,axis=0)
t = np.array([np.arange(0, 5, 0.001)]).T
## Just because meshgrid is used, we need to do the following adjustment
pt_t = Variable(torch.from_numpy(t).float(), requires_grad=True).to(device)
pt_q1 = net_q1(pt_t)
pt_q2 = net_q2(pt_t)
pt_q3 = net_q3(pt_t)
pt_q4 = net_q4(pt_t)
pt_q5 = net_q5(pt_t)
pt_q6 = net_q6(pt_t)
pt_q7 = net_q7(pt_t)
q1 = pt_q1.data.cpu().numpy()
q2 = pt_q2.data.cpu().numpy()
q3 = pt_q3.data.cpu().numpy()
q4 = pt_q4.data.cpu().numpy()
q5 = pt_q5.data.cpu().numpy()
q6 = pt_q6.data.cpu().numpy()
q7 = pt_q7.data.cpu().numpy()
torch.save(net_q1.state_dict(), "model_q1t.pt")
torch.save(net_q2.state_dict(), "model_q2t.pt")
torch.save(net_q3.state_dict(), "model_q3t.pt")
torch.save(net_q4.state_dict(), "model_q4t.pt")
torch.save(net_q5.state_dict(), "model_q5t.pt")
torch.save(net_q6.state_dict(), "model_q6t.pt")
torch.save(net_q7.state_dict(), "model_q7t.pt")
torch.save(loss_temp, 'Loss_value.pt')
plt.figure()
plt.plot(np.array([np.arange(0,np.size(loss_temp,0))]).T,loss_temp)
plt.figure()
plt.plot(t, q1, label="q1")
plt.grid()
plt.xlabel("Time")
plt.ylabel("Joint 1(radian)")
plt.legend()
plt.figure()
plt.plot(t, q2, label="q2")
plt.grid()
plt.xlabel("Time")
plt.ylabel("Joint 2(radian)")
plt.legend()
plt.figure()
plt.plot(t, q3, label="q3")
plt.grid()
plt.xlabel("Time")
plt.ylabel("Joint 3(radian)")
plt.legend()
plt.figure()
plt.plot(t, q4, label="q4")
plt.grid()
plt.xlabel("Time")
plt.ylabel("Joint 4(radian)")
plt.legend()
plt.show()
# plt.show()
#