diff --git a/README.md b/README.md
index 1046ccf..5c3dd15 100644
--- a/README.md
+++ b/README.md
@@ -1,7 +1,4 @@
- π΄π΄π΄π΄π΄π΄π΄π΄π΄π΄π΄π΄Under Constructionπ΄π΄π΄π΄π΄π΄π΄π΄π΄π΄π΄π΄
-
-
@@ -21,29 +18,37 @@
**OntoAligner** is a Python library designed to simplify ontology alignment and matching for researchers, practitioners, and developers. With a modular architecture and robust features, OntoAligner provides powerful tools to bridge ontologies effectively.
-## Installation
+## π§ͺ Installation
-OntoAligner is available on PyPI and can be installed with pip:
+You can install **OntoAligner** from PyPI using `pip`:
```bash
pip install ontoaligner
```
-Alternatively, install the latest version directly from the source:
+Alternatively, to get the latest version directly from the source, use the following commands:
```bash
git clone git@github.com:sciknoworg/OntoAligner.git
pip install ./ontoaligner
```
-
-## Documentation
+## π Documentation
Comprehensive documentation for OntoAligner, including detailed guides and examples, is available at **[ontoaligner.readthedocs.io](https://ontoaligner.readthedocs.io/)**.
----
+**Tutorials**
-## Quick Tour
+| Example | Tutorial | Script |
+|:-------------------------------|:----------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------:|
+| Lightweight | [π Fuzzy Matching](https://ontoaligner.readthedocs.io/tutorials/lightweight.html) | [π Code](https://github.com/sciknoworg/OntoAligner/blob/main/examples/fuzzy_matching.py) |
+| Retrieval | [π Retrieval Aligner](https://ontoaligner.readthedocs.io/tutorials/retriever.html) | [π Code](https://github.com/sciknoworg/OntoAligner/blob/main/examples/retriever_matching.py) |
+| Large Language Models | [π Large Language Models Aligner](https://ontoaligner.readthedocs.io/tutorials/llm.html) | [π Code](https://github.com/sciknoworg/OntoAligner/blob/main/examples/llm_matching.py) |
+| Retrieval Augmented Generation | [π Retrieval Augmented Generation](https://ontoaligner.readthedocs.io/tutorials/rag.html) | [π Code](https://github.com/sciknoworg/OntoAligner/blob/main/examples/rag_matching.py)|
+| FewShot | [π FewShot RAG](https://ontoaligner.readthedocs.io/tutorials/rag.html#fewshot-rag) | [π Code](https://github.com/sciknoworg/OntoAligner/blob/main/examples/rag_matching.py)
+| In-Context Vectors Learning | [π In-Context Vectors RAG](https://ontoaligner.readthedocs.io/tutorials/rag.html#in-context-vectors-rag) | [π Code](https://github.com/sciknoworg/OntoAligner/blob/main/examples/icv_rag_matching.py)
+
+## π Quick Tour
Below is an example of using Retrieval-Augmented Generation (RAG) for ontology matching:
@@ -71,16 +76,8 @@ encoder_model = ConceptParentRAGEncoder()
encoded_ontology = encoder_model(source=dataset['source'], target=dataset['target'])
# Step 4: Define configuration for retriever and LLM
-retriever_config = {
- "device": 'cuda',
- "top_k": 5,
-}
-llm_config = {
- "device": "cuda",
- "max_length": 300,
- "max_new_tokens": 10,
- "batch_size": 15,
-}
+retriever_config = {"device": 'cuda', "top_k": 5,}
+llm_config = {"device": "cuda", "max_length": 300, "max_new_tokens": 10, "batch_size": 15}
# Step 5: Initialize Generate predictions using RAG-based ontology matcher
model = MistralLLMBERTRetrieverRAG(retriever_config=retriever_config,
@@ -88,16 +85,13 @@ model = MistralLLMBERTRetrieverRAG(retriever_config=retriever_config,
predicts = model.generate(input_data=encoded_ontology)
# Step 6: Apply hybrid postprocessing
-hybrid_matchings, hybrid_configs = rag_hybrid_postprocessor(
- predicts=predicts,
- ir_score_threshold=0.1,
- llm_confidence_th=0.8
-)
+hybrid_matchings, hybrid_configs = rag_hybrid_postprocessor(predicts=predicts,
+ ir_score_threshold=0.1,
+ llm_confidence_th=0.8)
evaluation = metrics.evaluation_report(predicts=hybrid_matchings,
references=dataset['reference'])
-print("Hybrid Matching Evaluation Report:", json.dumps(evaluation, indent=4))
-print("Hybrid Matching Obtained Configuration:", hybrid_configs)
+print("Hybrid Matching Evaluation Report:", evaluation)
# Step 7: Convert matchings to XML format and save the XML representation
xml_str = xmlify.xml_alignment_generator(matchings=hybrid_matchings)
@@ -106,18 +100,16 @@ with open("matchings.xml", "w", encoding="utf-8") as xml_file:
```
-## Contribution
+## β Contribution
We welcome contributions to enhance OntoAligner and make it even better! Please review our contribution guidelines in [CONTRIBUTING.md](CONTRIBUTING.md) before getting started. Your support is greatly appreciated.
-
-
-## Contact
+[//]: # (## π§ Contact)
If you encounter any issues or have questions, please submit them in the [GitHub issues tracker](https://github.com/sciknoworg/OntoAligner/issues).
-## Citation
+## π‘ Acknowledgements
If you use OntoAligner in your work or research, please cite the following:
@@ -129,3 +121,12 @@ If you use OntoAligner in your work or research, please cite the following:
year = {2024},
url = {https://github.com/HamedBabaei/OntoAligner},
}
+```
+
+
+ This software is licensed under the
+ MIT License.
+
+
+
+