forked from cszn/KAIR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_test_swinir.py
361 lines (311 loc) · 16.3 KB
/
main_test_swinir.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
import argparse
from matplotlib import image
import cv2
import glob
import numpy as np
from collections import OrderedDict
from PIL import Image
import os
import torch
import requests
from torch.nn.parallel import DataParallel, DistributedDataParallel
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from models.network_swinir import SwinIR as net
from utils import utils_image as util
from utils.utils_dist import init_dist
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default='color_dn', help='classical_sr, lightweight_sr, real_sr, '
'gray_dn, color_dn, jpeg_car')
parser.add_argument('--scale', type=int, default=1, help='scale factor: 1, 2, 3, 4, 8') # 1 for dn and jpeg car
parser.add_argument('--img_size', type=int, default=200, help='Patch size/image size used for calculating mask during training')
parser.add_argument('--noise', type=int, default=15, help='noise level: 15, 25, 50')
parser.add_argument('--jpeg', type=int, default=40, help='scale factor: 10, 20, 30, 40')
parser.add_argument('--training_patch_size', type=int, default=128, help='patch size used in training SwinIR. '
'Just used to differentiate two different settings in Table 2 of the paper. '
'Images are NOT tested patch by patch.')
parser.add_argument('--large_model', action='store_true', help='use large model, only provided for real image sr')
parser.add_argument('--model_path', type=str,
default='model_zoo/swinir/001_classicalSR_DIV2K_s48w8_SwinIR-M_x2.pth')
parser.add_argument('--output_dir', type=str, default=None, help='dir path for saving output images')
parser.add_argument('--folder_lq', type=str, default=None, help='input low-quality test image folder')
parser.add_argument('--folder_gt', type=str, default=None, help='input ground-truth test image folder')
parser.add_argument('--tile', type=int, default=None, help='Tile size, None for no tile during testing (testing as a whole)')
parser.add_argument('--tile_overlap', type=int, default=32, help='Overlapping of different tiles')
parser.add_argument('--cal_metrics', default=False, help="Calculate PSNR and SSIM metrics" )
parser.add_argument('--dist', action="store_true")
parser.add_argument('--launcher', default='pytorch', help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)
args = parser.parse_args()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# set up model
if os.path.exists(args.model_path):
print(f'loading model from {args.model_path}')
else:
raise FileNotFoundError(args.model_path)
# os.makedirs(os.path.dirname(args.model_path), exist_ok=True)
# url = 'https://github.com/JingyunLiang/SwinIR/releases/download/v0.0/{}'.format(os.path.basename(args.model_path))
# r = requests.get(url, allow_redirects=True)
# print(f'downloading model {args.model_path}')
# open(args.model_path, 'wb').write(r.content)
if args.dist:
init_dist('pytorch')
model = define_model(args)
model = model.to(device)
if args.dist:
model = DistributedDataParallel(model, device_ids=[torch.cuda.current_device()])
# else:
# model = DataParallel(model)
model.eval()
data_set = define_data_set(args)
data_sampler = DistributedSampler(data_set, drop_last=False)
data_loader = DataLoader(data_set,
batch_size=1,
shuffle=False,
num_workers=4,
drop_last=False,
pin_memory=True,
sampler=data_sampler)
# setup folder and path
folder, save_dir, border, window_size = setup(args)
os.makedirs(save_dir, exist_ok=True)
test_results = OrderedDict()
test_results['psnr'] = []
test_results['ssim'] = []
test_results['psnr_y'] = []
test_results['ssim_y'] = []
test_results['psnr_b'] = []
psnr, ssim, psnr_y, ssim_y, psnr_b = 0, 0, 0, 0, 0
# for idx, path in enumerate(sorted(glob.glob(os.path.join(folder, '*')))):
for idx, d in enumerate(data_loader):
# read image
# imgname, img_lq, img_gt = get_image_pair(args, path) # image to HWC-BGR, float32
# img_lq = np.transpose(img_lq if img_lq.shape[2] == 1 else img_lq[:, :, [2, 1, 0]], (2, 0, 1)) # HCW-BGR to CHW-RGB
# img_lq = torch.from_numpy(img_lq).float().unsqueeze(0).to(device) # CHW-RGB to NCHW-RGB
#print(d)
imgname, img_lq, img_gt = os.path.basename(d['L_path'][0]), d['L'].to(device), d['H'].to(device)
imgname = os.path.splitext(imgname)[0]
orig_input_img = d['orig_L'][0]
channel = 3
if len(orig_input_img.shape) == 3 and orig_input_img.shape[2] == 4:
channel = 4
#print(imgname); sys.exit()
# inference
with torch.no_grad():
# pad input image to be a multiple of window_size
_, _, h_old, w_old = img_lq.size()
h_pad = (h_old // window_size + 1) * window_size - h_old
w_pad = (w_old // window_size + 1) * window_size - w_old
img_lq = torch.cat([img_lq, torch.flip(img_lq, [2])], 2)[:, :, :h_old + h_pad, :]
img_lq = torch.cat([img_lq, torch.flip(img_lq, [3])], 3)[:, :, :, :w_old + w_pad]
try:
output = test(img_lq, model, args, window_size)
except RuntimeError:
print(imgname)
print("runtimeError")
continue
output = output[..., :h_old * args.scale, :w_old * args.scale]
# save image
output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy()
if output.ndim == 3:
output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0)) # CHW-RGB to HCW-BGR
output = (output * 255.0).round()
if channel == 4:
orig_input_img = orig_input_img.numpy()
output = combine_img_rgba(orig_input_img, output)
output = output.astype(np.uint8) # float32 to uint8
cv2.imwrite(f'{save_dir}/{imgname}.png', output)
# evaluate psnr/ssim/psnr_b
if img_gt is not None and args.cal_metrics:
img_gt = util.tensor2uint(img_gt)
#img_gt = (img_gt * 255.0).round().astype(np.uint8) # float32 to uint8
img_gt = img_gt[:h_old * args.scale, :w_old * args.scale, ...] # crop gt
img_gt = np.squeeze(img_gt)
psnr = util.calculate_psnr(output, img_gt, border=border)
ssim = util.calculate_ssim(output, img_gt, border=border)
test_results['psnr'].append(psnr)
test_results['ssim'].append(ssim)
if img_gt.ndim == 3: # RGB image
output_y = util.bgr2ycbcr(output.astype(np.float32) / 255.) * 255.
img_gt_y = util.bgr2ycbcr(img_gt.astype(np.float32) / 255.) * 255.
psnr_y = util.calculate_psnr(output_y, img_gt_y, border=border)
ssim_y = util.calculate_ssim(output_y, img_gt_y, border=border)
test_results['psnr_y'].append(psnr_y)
test_results['ssim_y'].append(ssim_y)
if args.task in ['jpeg_car']:
psnr_b = util.calculate_psnrb(output, img_gt, border=border)
test_results['psnr_b'].append(psnr_b)
print('Testing {:d} {:20s} - PSNR: {:.2f} dB; SSIM: {:.4f}; '
'PSNR_Y: {:.2f} dB; SSIM_Y: {:.4f}; '
'PSNR_B: {:.2f} dB.'.
format(idx, imgname, psnr, ssim, psnr_y, ssim_y, psnr_b))
else:
print('Testing {:d} {:20s}'.format(idx, imgname))
# summarize psnr/ssim
if img_gt is not None and args.cal_metrics:
ave_psnr = sum(test_results['psnr']) / len(test_results['psnr'])
ave_ssim = sum(test_results['ssim']) / len(test_results['ssim'])
print('\n{} \n-- Average PSNR/SSIM(RGB): {:.2f} dB; {:.4f}'.format(save_dir, ave_psnr, ave_ssim))
if img_gt.ndim == 3:
ave_psnr_y = sum(test_results['psnr_y']) / len(test_results['psnr_y'])
ave_ssim_y = sum(test_results['ssim_y']) / len(test_results['ssim_y'])
print('-- Average PSNR_Y/SSIM_Y: {:.2f} dB; {:.4f}'.format(ave_psnr_y, ave_ssim_y))
if args.task in ['jpeg_car']:
ave_psnr_b = sum(test_results['psnr_b']) / len(test_results['psnr_b'])
print('-- Average PSNR_B: {:.2f} dB'.format(ave_psnr_b))
def define_data_set(args):
from data.dataset_sr import DatasetSR
data_opt = {
'scale': args.scale,
'n_channels': 3,
'H_size': None,
'dataroot_H': args.folder_lq, # dummy
'dataroot_L': args.folder_lq,
'phase': "test",
'return_orig_img': True
}
data_set = DatasetSR(data_opt)
return data_set
def define_model(args):
# 001 classical image sr
if args.task == 'classical_sr':
model = net(upscale=args.scale, in_chans=3, img_size=args.training_patch_size, window_size=8,
img_range=1., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6],
mlp_ratio=2, upsampler='pixelshuffle', resi_connection='1conv')
param_key_g = 'params'
# 002 lightweight image sr
# use 'pixelshuffledirect' to save parameters
elif args.task == 'lightweight_sr':
model = net(upscale=args.scale, in_chans=3, img_size=64, window_size=8,
img_range=1., depths=[6, 6, 6, 6], embed_dim=60, num_heads=[6, 6, 6, 6],
mlp_ratio=2, upsampler='pixelshuffledirect', resi_connection='1conv')
param_key_g = 'params'
# 003 real-world image sr
elif args.task == 'real_sr':
if not args.large_model:
# use 'nearest+conv' to avoid block artifacts
model = net(upscale=args.scale, in_chans=3, img_size=64, window_size=8,
img_range=1., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6],
mlp_ratio=2, upsampler='nearest+conv', resi_connection='1conv')
else:
# larger model size; use '3conv' to save parameters and memory; use ema for GAN training
upsampler='null'
if args.scale > 1:
upsampler = 'nearest+conv'
model = net(upscale=args.scale, in_chans=3, img_size=args.img_size, window_size=8,
img_range=1., depths=[6, 6, 6, 6, 6, 6, 6, 6, 6], embed_dim=240,
num_heads=[8, 8, 8, 8, 8, 8, 8, 8, 8],
mlp_ratio=2, upsampler=upsampler, resi_connection='3conv')
param_key_g = 'params_ema'
# 004 grayscale image denoising
elif args.task == 'gray_dn':
model = net(upscale=1, in_chans=1, img_size=128, window_size=8,
img_range=1., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6],
mlp_ratio=2, upsampler='', resi_connection='1conv')
param_key_g = 'params'
# 005 color image denoising
elif args.task == 'color_dn':
model = net(upscale=1, in_chans=3, img_size=128, window_size=8,
img_range=1., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6],
mlp_ratio=2, upsampler='', resi_connection='1conv')
param_key_g = 'params'
# 006 JPEG compression artifact reduction
# use window_size=7 because JPEG encoding uses 8x8; use img_range=255 because it's sligtly better than 1
elif args.task == 'jpeg_car':
model = net(upscale=1, in_chans=1, img_size=126, window_size=7,
img_range=255., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6],
mlp_ratio=2, upsampler='', resi_connection='1conv')
param_key_g = 'params'
pretrained_model = torch.load(args.model_path)
model.load_state_dict(pretrained_model[param_key_g] if param_key_g in pretrained_model.keys() else pretrained_model, strict=True)
return model
def setup(args):
# 001 classical image sr/ 002 lightweight image sr
if args.task in ['classical_sr', 'lightweight_sr']:
save_dir = f'{args.output_dir}/swinir_{args.task}_x{args.scale}'
folder = args.folder_gt
border = args.scale
window_size = 8
# 003 real-world image sr
elif args.task in ['real_sr']:
save_dir = args.output_dir
folder = args.folder_lq
border = 0
window_size = 8
# 004 grayscale image denoising/ 005 color image denoising
elif args.task in ['gray_dn', 'color_dn']:
save_dir = f'{args.output_dir}/swinir_{args.task}_noise{args.noise}'
folder = args.folder_gt
border = 0
window_size = 8
# 006 JPEG compression artifact reduction
elif args.task in ['jpeg_car']:
save_dir = f'{args.output_dir}/swinir_{args.task}_jpeg{args.jpeg}'
folder = args.folder_gt
border = 0
window_size = 7
return folder, save_dir, border, window_size
def get_image_pair(args, path):
(imgname, imgext) = os.path.splitext(os.path.basename(path))
# 001 classical image sr/ 002 lightweight image sr (load lq-gt image pairs)
if args.task in ['classical_sr', 'lightweight_sr']:
img_gt = cv2.imread(path, cv2.IMREAD_COLOR).astype(np.float32) / 255.
img_lq = cv2.imread(f'{args.folder_lq}/{imgname}x{args.scale}{imgext}', cv2.IMREAD_COLOR).astype(
np.float32) / 255.
# 003 real-world image sr (load lq image only)
elif args.task in ['real_sr']:
img_gt = None
img_lq = cv2.imread(path, cv2.IMREAD_COLOR).astype(np.float32) / 255.
# 004 grayscale image denoising (load gt image and generate lq image on-the-fly)
elif args.task in ['gray_dn']:
img_gt = cv2.imread(path, cv2.IMREAD_GRAYSCALE).astype(np.float32) / 255.
np.random.seed(seed=0)
img_lq = img_gt + np.random.normal(0, args.noise / 255., img_gt.shape)
img_gt = np.expand_dims(img_gt, axis=2)
img_lq = np.expand_dims(img_lq, axis=2)
# 005 color image denoising (load gt image and generate lq image on-the-fly)
elif args.task in ['color_dn']:
img_gt = cv2.imread(path, cv2.IMREAD_COLOR).astype(np.float32) / 255.
np.random.seed(seed=0)
img_lq = img_gt + np.random.normal(0, args.noise / 255., img_gt.shape)
# 006 JPEG compression artifact reduction (load gt image and generate lq image on-the-fly)
elif args.task in ['jpeg_car']:
img_gt = cv2.imread(path, 0)
result, encimg = cv2.imencode('.jpg', img_gt, [int(cv2.IMWRITE_JPEG_QUALITY), args.jpeg])
img_lq = cv2.imdecode(encimg, 0)
img_gt = np.expand_dims(img_gt, axis=2).astype(np.float32) / 255.
img_lq = np.expand_dims(img_lq, axis=2).astype(np.float32) / 255.
return imgname, img_lq, img_gt
def combine_img_rgba(ori_img, sr_img):
h, w, c = sr_img.shape
ori_img_scale = cv2.resize(ori_img, (w, h), Image.BICUBIC)
sr_img_rgba = np.concatenate([sr_img, ori_img_scale[:, :, 3:]], axis=2)
return sr_img_rgba
def test(img_lq, model, args, window_size):
if args.tile is None:
# test the image as a whole
output = model(img_lq)
else:
# test the image tile by tile
b, c, h, w = img_lq.size()
tile = min(args.tile, h, w)
assert tile % window_size == 0, "tile size should be a multiple of window_size"
tile_overlap = args.tile_overlap
sf = args.scale
stride = tile - tile_overlap
h_idx_list = list(range(0, h-tile, stride)) + [h-tile]
w_idx_list = list(range(0, w-tile, stride)) + [w-tile]
E = torch.zeros(b, c, h*sf, w*sf).type_as(img_lq)
W = torch.zeros_like(E)
for h_idx in h_idx_list:
for w_idx in w_idx_list:
in_patch = img_lq[..., h_idx:h_idx+tile, w_idx:w_idx+tile]
out_patch = model(in_patch)
out_patch_mask = torch.ones_like(out_patch)
E[..., h_idx*sf:(h_idx+tile)*sf, w_idx*sf:(w_idx+tile)*sf].add_(out_patch)
W[..., h_idx*sf:(h_idx+tile)*sf, w_idx*sf:(w_idx+tile)*sf].add_(out_patch_mask)
output = E.div_(W)
return output
if __name__ == '__main__':
main()