-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathotm_adapt_util.hpp
215 lines (198 loc) · 6.87 KB
/
otm_adapt_util.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
#pragma once
#include <cassert>
#include <hpc_array.hpp>
#include <hpc_array_vector.hpp>
#include <hpc_dimensional.hpp>
#include <hpc_execution.hpp>
#include <hpc_macros.hpp>
#include <hpc_range.hpp>
#include <hpc_vector.hpp>
#include <lgr_state.hpp>
#include <otm_adapt.hpp>
#include <otm_distance.hpp>
#include <otm_search.hpp>
#include <otm_search_util.hpp>
namespace lgr {
template <typename Index>
HPC_NOINLINE inline void
evaluate_adapt(
const hpc::device_vector<hpc::length<double>, Index>& nearest_neighbor_dists,
const hpc::device_vector<Index, Index>& nearest_neighbors,
const hpc::counting_range<Index>& range,
const hpc::length<double> nearest_criterion,
hpc::device_vector<hpc::length<double>, Index>& criteria,
hpc::device_vector<Index, Index>& other_entities,
hpc::device_vector<adapt_op, Index>& adapt_ops)
{
assert(criteria.size() == range.size());
auto others = other_entities.begin();
auto ops = adapt_ops.begin();
auto neighbors = nearest_neighbors.cbegin();
auto neighbor_dists = nearest_neighbor_dists.cbegin();
auto crit = criteria.begin();
auto func = [=] HPC_DEVICE(const Index i) {
crit[i] = neighbor_dists[i];
if (crit[i] > nearest_criterion) {
others[i] = neighbors[i];
ops[i] = adapt_op::SPLIT;
} else {
others[i] = Index(-1);
ops[i] = adapt_op::NONE;
}
};
hpc::for_each(hpc::device_policy(), range, func);
}
HPC_NOINLINE inline void
evaluate_node_adapt(const state& s, otm_adapt_state& a, const hpc::length<double> min_dist)
{
evaluate_adapt(
s.nearest_node_neighbor_dist,
s.nearest_node_neighbor,
s.nodes,
min_dist,
a.node_criteria,
a.other_node,
a.node_op);
}
HPC_NOINLINE inline void
evaluate_point_adapt(const state& s, otm_adapt_state& a, const hpc::length<double> min_dist)
{
search_util::point_neighbors n;
search::do_otm_point_nearest_point_search(s, n, 1);
compute_point_neighbor_squared_distances(s, n, a.point_criteria);
evaluate_adapt(
s.nearest_point_neighbor_dist,
s.nearest_point_neighbor,
s.points,
min_dist,
a.point_criteria,
a.other_point,
a.point_op);
}
template <typename Index>
HPC_NOINLINE inline void
choose_adapt(
const hpc::counting_range<Index>& range,
const hpc::device_vector<Index, Index>& other_entity,
hpc::device_vector<adapt_op, Index>& entity_ops,
hpc::device_vector<Index, Index>& counts)
{
hpc::fill(hpc::device_policy(), counts, Index(1));
auto others = other_entity.cbegin();
auto ops = entity_ops.begin();
auto new_counts = counts.begin();
auto func = [=] HPC_DEVICE(const Index i) {
auto op = ops[i];
if (op == adapt_op::NONE) return;
auto target = others[i];
auto target_of_target = others[target];
if (target_of_target == i && target < i) {
// symmetric nearest neighbor relation
ops[i] = adapt_op::NONE;
return;
}
Index entity_count(-100);
if (op == adapt_op::SPLIT) {
entity_count = Index(2);
} else if (op == adapt_op::COLLAPSE) {
entity_count = Index(0);
}
new_counts[i] = entity_count;
};
hpc::for_each(hpc::device_policy(), range, func);
}
HPC_NOINLINE inline void
choose_node_adapt(const state& s, otm_adapt_state& a)
{
choose_adapt(s.nodes, a.other_node, a.node_op, a.node_counts);
}
HPC_NOINLINE inline void
choose_point_adapt(const state& s, otm_adapt_state& a)
{
choose_adapt(s.points, a.other_point, a.point_op, a.point_counts);
}
template <typename Index>
HPC_NOINLINE inline int
get_num_chosen_for_adapt(const hpc::device_vector<adapt_op, Index>& ops)
{
auto const num_chosen =
hpc::transform_reduce(hpc::device_policy(), ops, int(0), hpc::plus<int>(), [] HPC_DEVICE(adapt_op const op) {
return op == adapt_op::NONE ? 0 : 1;
});
return num_chosen;
}
template <typename Index>
HPC_NOINLINE inline void
apply_adapt(
const hpc::counting_range<Index>& range,
const hpc::device_vector<adapt_op, Index>& ops,
const hpc::device_vector<Index, Index>& others,
hpc::device_vector<Index, Index>& old_to_new,
hpc::device_vector<bool, Index>& new_are_same,
hpc::device_array_vector<hpc::array<Index, 2, int>, Index>& interpolate_from)
{
hpc::fill(hpc::device_policy(), new_are_same, true);
auto const entity_to_op = ops.cbegin();
auto const entity_to_other = others.cbegin();
auto old_to_new_entities = old_to_new.begin();
auto new_entities_are_same = new_are_same.begin();
auto interpolate_from_entities = interpolate_from.begin();
auto func = [=] HPC_DEVICE(Index const i) {
auto op = entity_to_op[i];
if (op == adapt_op::NONE) return;
auto const target = entity_to_other[i];
if (op == adapt_op::SPLIT) {
auto const new_entity = old_to_new_entities[i];
auto const split_entity = new_entity + Index(1);
new_entities_are_same[split_entity] = false;
hpc::array<Index, 2, int> interp_from;
interp_from[0] = i;
interp_from[1] = target;
interpolate_from_entities[split_entity] = interp_from;
}
};
hpc::for_each(hpc::device_policy(), range, func);
}
HPC_NOINLINE inline void
apply_node_adapt(const state& s, otm_adapt_state& a)
{
apply_adapt(
s.nodes, a.node_op, a.other_node, a.old_nodes_to_new_nodes, a.new_nodes_are_same, a.interpolate_from_nodes);
}
HPC_NOINLINE inline void
apply_point_adapt(const state& s, otm_adapt_state& a)
{
apply_adapt(
s.points,
a.point_op,
a.other_point,
a.old_points_to_new_points,
a.new_points_are_same,
a.interpolate_from_points);
}
template <class Range>
HPC_NOINLINE inline void
interpolate_nodal_data(const otm_adapt_state& a, Range& data)
{
interpolate_data(a.new_nodes, a.new_nodes_to_old_nodes, a.new_nodes_are_same, a.interpolate_from_nodes, data);
}
template <class Range>
HPC_NOINLINE inline void
interpolate_point_data(const otm_adapt_state& a, Range& data)
{
interpolate_data(a.new_points, a.new_points_to_old_points, a.new_points_are_same, a.interpolate_from_points, data);
}
template <class Range>
HPC_NOINLINE inline void
lie_interpolate_point_data(const otm_adapt_state& a, Range& data)
{
lie_interpolate_data(
a.new_points, a.new_points_to_old_points, a.new_points_are_same, a.interpolate_from_points, data);
}
template <class Range>
HPC_NOINLINE inline void
distribute_point_data(const otm_adapt_state& a, Range& data)
{
distribute_data(a.new_points, a.new_points_to_old_points, a.new_points_are_same, a.interpolate_from_points, data);
}
} // namespace lgr