-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmobius-fr.html
60 lines (55 loc) · 3.44 KB
/
mobius-fr.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
<!DOCTYPE html>
<html lang="fr">
<head>
<meta charset="utf-8">
<title>Transformation de Möbius</title>
<link rel="icon" href="images/riemann_sphere">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta name="keywords" content="mathematiques, geometrie, visualisation, mobius, symplectique, groupe, veronese, lagrangien">
<link rel="stylesheet" href="info.css">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.css" integrity="sha384-vKruj+a13U8yHIkAyGgK1J3ArTLzrFGBbBc0tDp4ad/EyewESeXE/Iv67Aj8gKZ0" crossorigin="anonymous">
<script defer src="https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.js" integrity="sha384-PwRUT/YqbnEjkZO0zZxNqcxACrXe+j766U2amXcgMg5457rve2Y7I6ZJSm2A0mS4" crossorigin="anonymous"></script>
<script defer src="https://cdn.jsdelivr.net/npm/[email protected]/dist/contrib/auto-render.min.js" integrity="sha384-+VBxd3r6XgURycqtZ117nYw44OOcIax56Z4dCRWbxyPt0Koah1uHoK0o4+/RRE05" crossorigin="anonymous"></script>
<script>
document.addEventListener("DOMContentLoaded", function() {
renderMathInElement(document.body, {
delimiters: [
{left: '\\(', right: '\\)', display: false},
{left: '\\[', right: '\\]', display: true},
{left: "\\begin{align}", right: "\\end{align}", display: true},
{left: "\\begin{align*}", right: "\\end{align*}", display: true}
],
throwOnError : false
});
});
</script>
</head>
<body>
<header><a href="index-fr.html"><input type="button" value="Accueil"></a> <a href="mobius.html"><input type="button" value="English"></a></header>
<h1>Transformation de Möbius</h1>
<p>
Une transformation de Möbius \(M\) est une fonction \(M: \hat{\mathbb{C}}\rightarrow\hat{\mathbb{C}}\), où
\(\hat{\mathbb{C}} = \mathbb{C}\cup\{\infty\}\) et est appelée la <i>sphère de Riemann</i>.<br>
Plus précisément, une transformation de Möbius est une fonction définie par
\begin{align*}
M : \hat{\mathbb{C}} &\rightarrow \hat{\mathbb{C}}\\
z &\mapsto \frac{az+b}{cz+d}
\end{align*}
avec \(a,b,c,d \in \mathbb{C}\) et \(ad-bc \neq 0\).
</p>
<p>
Le programme utilise le fait qu'il existe une unique \(M\) telle que, pour \(\{z_{1},z_{2},z_{3}\}\) et \(\{w_{1},w_{2},w_{3}\}\)
deux ensembles d'éléments distincts dans \(\hat{\mathbb{C}}\), nous avons que \(M(z_{i}) = w_{i}\) pour \(i=1,2,3\).<br>
Les deux points gris représentent \(z_{1} = w_{1}\) et \(z_{2} = w_{2}\) et en glissant la souris,
vous spécifiez \(z_{3} \mapsto w_{3}\). Le programme trouve alors la fonction \(M\) correspondante et applique la transformation sur la sphère de Riemann!
</p>
<p>
À gauche, la visualisation utilise du <i>domain coloring</i> et à droite, elle utilise des points discrets \(a+b\mathrm{i}\)
avec \(a,b \in \mathbb{Z}\).
</p>
<div class="picture_box">
<a href="visualisation/domaincoloring-fr.html"><img src="images/picture_dom_col.png"></a>
<a href="visualisation/points-fr.html"><img src="images/picture_points.png"></a>
</div>
</body>
</html>