-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
146 lines (123 loc) · 6.46 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# coding: utf-8
from __future__ import print_function
from __future__ import division
import tensorflow as tf
from nets import nets_factory
from preprocessing import preprocessing_factory
import reader
import model
import time
import losses
import utils
import os
import argparse
slim = tf.contrib.slim
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('-c', '--conf', default='conf/mosaic.yml', help='the path to the conf file')
return parser.parse_args()
def main(FLAGS):
style_features_t = losses.get_style_features(FLAGS)
# Make sure the training path exists.
training_path = os.path.join(FLAGS.model_path, FLAGS.naming)
if not(os.path.exists(training_path)):
os.makedirs(training_path)
with tf.Graph().as_default():
with tf.Session() as sess:
"""Build Network"""
network_fn = nets_factory.get_network_fn(
FLAGS.loss_model,
num_classes=1,
is_training=False)
image_preprocessing_fn, image_unprocessing_fn = preprocessing_factory.get_preprocessing(
FLAGS.loss_model,
is_training=False)
processed_images = reader.image(FLAGS.batch_size, FLAGS.image_size, FLAGS.image_size,
'train2014/', image_preprocessing_fn, epochs=FLAGS.epoch)
generated = model.net(processed_images, training=True)
processed_generated = [image_preprocessing_fn(image, FLAGS.image_size, FLAGS.image_size)
for image in tf.unstack(generated, axis=0, num=FLAGS.batch_size)
]
processed_generated = tf.stack(processed_generated)
_, endpoints_dict = network_fn(tf.concat([processed_generated, processed_images], 0), spatial_squeeze=False)
# Log the structure of loss network
tf.logging.info('Loss network layers(You can define them in "content_layers" and "style_layers"):')
for key in endpoints_dict:
tf.logging.info(key)
"""Build Losses"""
content_loss = losses.content_loss(endpoints_dict, FLAGS.content_layers)
style_loss, style_loss_summary = losses.style_loss(endpoints_dict, style_features_t, FLAGS.style_layers)
tv_loss = losses.total_variation_loss(generated) # use the unprocessed image
loss = FLAGS.style_weight * style_loss + FLAGS.content_weight * content_loss + FLAGS.tv_weight * tv_loss
# Add Summary for visualization in tensorboard.
"""Add Summary"""
tf.summary.scalar('losses/content_loss', content_loss)
tf.summary.scalar('losses/style_loss', style_loss)
tf.summary.scalar('losses/regularizer_loss', tv_loss)
tf.summary.scalar('weighted_losses/weighted_content_loss', content_loss * FLAGS.content_weight)
tf.summary.scalar('weighted_losses/weighted_style_loss', style_loss * FLAGS.style_weight)
tf.summary.scalar('weighted_losses/weighted_regularizer_loss', tv_loss * FLAGS.tv_weight)
tf.summary.scalar('total_loss', loss)
for layer in FLAGS.style_layers:
tf.summary.scalar('style_losses/' + layer, style_loss_summary[layer])
tf.summary.image('generated', generated)
# tf.image_summary('processed_generated', processed_generated) # May be better?
tf.summary.image('origin', tf.stack([
image_unprocessing_fn(image) for image in tf.unstack(processed_images, axis=0, num=FLAGS.batch_size)
]))
summary = tf.summary.merge_all()
writer = tf.summary.FileWriter(training_path)
"""Prepare to Train"""
global_step = tf.Variable(0, name="global_step", trainable=False)
variable_to_train = []
for variable in tf.trainable_variables():
if not(variable.name.startswith(FLAGS.loss_model)):
variable_to_train.append(variable)
train_op = tf.train.AdamOptimizer(1e-3).minimize(loss, global_step=global_step, var_list=variable_to_train)
variables_to_restore = []
for v in tf.global_variables():
if not(v.name.startswith(FLAGS.loss_model)):
variables_to_restore.append(v)
saver = tf.train.Saver(variables_to_restore, write_version=tf.train.SaverDef.V1)
sess.run([tf.global_variables_initializer(), tf.local_variables_initializer()])
# Restore variables for loss network.
init_func = utils._get_init_fn(FLAGS)
init_func(sess)
# Restore variables for training model if the checkpoint file exists.
last_file = tf.train.latest_checkpoint(training_path)
if last_file:
tf.logging.info('Restoring model from {}'.format(last_file))
saver.restore(sess, last_file)
"""Start Training"""
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
start_time = time.time()
try:
while not coord.should_stop():
_, loss_t, step = sess.run([train_op, loss, global_step])
elapsed_time = time.time() - start_time
start_time = time.time()
"""logging"""
# print(step)
if step % 10 == 0:
tf.logging.info('step: %d, total Loss %f, secs/step: %f' % (step, loss_t, elapsed_time))
"""summary"""
if step % 25 == 0:
tf.logging.info('adding summary...')
summary_str = sess.run(summary)
writer.add_summary(summary_str, step)
writer.flush()
"""checkpoint"""
if step % 1000 == 0:
saver.save(sess, os.path.join(training_path, 'fast-style-model.ckpt'), global_step=step)
except tf.errors.OutOfRangeError:
saver.save(sess, os.path.join(training_path, 'fast-style-model.ckpt-done'))
tf.logging.info('Done training -- epoch limit reached')
finally:
coord.request_stop()
coord.join(threads)
if __name__ == '__main__':
tf.logging.set_verbosity(tf.logging.INFO)
args = parse_args()
FLAGS = utils.read_conf_file(args.conf)
main(FLAGS)