forked from jonescompneurolab/SpectralEvents
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspectralevents_ts2tfr.m
73 lines (61 loc) · 1.79 KB
/
spectralevents_ts2tfr.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
function [TFR,tVec,fVec] = spectralevents_ts2tfr(S,fVec,Fs,width)
% function [TFR,tVec,fVec] = spectralevents_ts2tfr(S,fVec,Fs,width);
%
% Calculates the TFR (in spectral power) of a time-series waveform by
% convolving in the time-domain with a Morlet wavelet.
%
% Input
% -----
% S : signals = time x Trials
% fVec : frequencies over which to calculate TF energy
% Fs : sampling frequency
% width: number of cycles in wavelet (> 5 advisable)
%
% Output
% ------
% t : time
% f : frequency
% B : phase-locking factor = frequency x time
%
% Adapted from Ole Jensen's traces2TFR in the 4Dtools toolbox.
%
% See also SPECTRALEVENTS, SPECTRALEVENTS_FIND, SPECTRALEVENTS_VIS.
S = S';
tVec = (1:size(S,2))/Fs;
B = zeros(length(fVec),size(S,2));
for i=1:size(S,1)
for j=1:length(fVec)
B(j,:) = energyvec(fVec(j),detrend(S(i,:)),Fs,width) + B(j,:);
end
end
TFR = B/size(S,1);
function y = energyvec(f,s,Fs,width)
% Return a vector containing the energy as a
% function of time for frequency f. The energy
% is calculated using Morlet's wavelets.
% s : signal
% Fs: sampling frequency
% width : width of Morlet wavelet (>= 5 suggested).
dt = 1/Fs;
sf = f/width;
st = 1/(2*pi*sf);
t=0:dt:3.5*st;
t=[-t(end:-1:2),t];
m = morlet(f,t,width);
y = conv(s,m);
y = 2*(dt*abs(y)).^2;
y = y(floor(length(m)/2) + 1:length(y)-floor(length(m)/2));
end
function y = morlet(f,t,width)
% Morlet's wavelet for frequency f and time t.
% The wavelet will be normalized so the total energy is 1.
% width defines the ``width'' of the wavelet.
% A value >= 5 is suggested.
%
% Ref: Tallon-Baudry et al., J. Neurosci. 15, 722-734 (1997)
sf = f/width;
st = 1/(2*pi*sf);
A = 1/(st*sqrt(2*pi));
y = A*exp(-t.^2/(2*st^2)).*exp(1i*2*pi*f.*t);
end
end