forked from dusty-nv/jetson-inference
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsegnet-console.py
executable file
·75 lines (61 loc) · 3.32 KB
/
segnet-console.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
#!/usr/bin/python
#
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
#
import jetson.inference
import jetson.utils
import argparse
import ctypes
import sys
# parse the command line
parser = argparse.ArgumentParser(description="Segment an image using an semantic segmentation DNN.",
formatter_class=argparse.RawTextHelpFormatter, epilog=jetson.inference.segNet.Usage())
parser.add_argument("file_in", type=str, help="filename of the input image to process")
parser.add_argument("file_out", type=str, default=None, nargs='?', help="filename of the output image to save")
parser.add_argument("--network", type=str, default="fcn-resnet18-voc", help="pre-trained model to load, see below for options")
parser.add_argument("--visualize", type=str, default="overlay", choices=["overlay", "mask"], help="visualization mode for the output image, options are:\n 'overlay' or 'mask' (default: 'overlay')")
parser.add_argument("--filter-mode", type=str, default="linear", choices=["point", "linear"], help="filtering mode used during visualization, options are:\n 'point' or 'linear' (default: 'linear')")
parser.add_argument("--ignore-class", type=str, default="void", help="optional name of class to ignore in the visualization results (default: 'void')")
parser.add_argument("--alpha", type=float, default=120.0, help="alpha blending value to use during overlay, between 0.0 and 255.0 (default: 120.0)")
try:
opt = parser.parse_known_args()[0]
except:
print("")
parser.print_help()
sys.exit(0)
# load an image (into shared CPU/GPU memory)
img, width, height = jetson.utils.loadImageRGBA(opt.file_in)
# allocate the output image for the overlay/mask
img_output = jetson.utils.cudaAllocMapped(width * height * 4 * ctypes.sizeof(ctypes.c_float))
# load the segmentation network
net = jetson.inference.segNet(opt.network, sys.argv)
# process the segmentation network
net.Process(img, width, height, opt.ignore_class)
# print out timing info
net.PrintProfilerTimes()
# perform the visualization
if opt.file_out is not None:
if opt.visualize == 'overlay':
net.Overlay(img_output, width, height, opt.filter_mode)
elif opt.visualize == 'mask':
net.Mask(img_output, width, height, opt.filter_mode)
jetson.utils.cudaDeviceSynchronize()
jetson.utils.saveImageRGBA(opt.file_out, img_output, width, height)