forked from nasatter/Few-shot_Learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimese_trans.py
514 lines (465 loc) · 21.1 KB
/
simese_trans.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
from torch.utils.data import Dataset,DataLoader
import torchvision.transforms as transforms
from torch.autograd import Variable
from torch.optim.lr_scheduler import StepLR
import cv2
import torch.nn.functional as F
import numpy as np
import os
import random
import sys, argparse
from torchvision import models
parser = argparse.ArgumentParser(description="Few Shot Visual Recognition")
parser.add_argument("-d","--directory",type = str, default = 'D:\\thesis_working\\Mat_Cropped_Imgs\\scaled_few_shot')
parser.add_argument("-c","--class_name",type = str, default = 'new')
parser.add_argument("-n","--run_name",type = str, default = 'new_10')
parser.add_argument("-l","--load_weight_name",type = str, default = "weight_a.pt")
parser.add_argument("-t","--test_only",type = int, default = 0)
parser.add_argument("-m","--model_only",type = int, default = 0)
parser.add_argument("-ts","--train_size",type = int, default= 0)
parser.add_argument("-sh","--shot_size", type = int, default = 10)
parser.add_argument("-lr","--learning_rate", type = float, default = 0.0001)
parser.add_argument("-g","--gpu",type=int, default=0)
parser.add_argument("-e","--epoch",type=int, default=1000)
args = parser.parse_args()
#workingdir = 'D:\\thesis_working\\poredata_cropped_scaled_224x244'
workingdir = args.directory
clas = args.class_name
pore_folder = 'pore_'+clas
nonpore_folder = 'non-pore_'+clas
clas = args.run_name
name="weight\\weight_"+clas+".pt"
tempna='./'
load_name = "weight\\"+args.load_weight_name
test_only=args.test_only
model_only = args.model_only
train_size = args.train_size
shot=args.shot_size
patiance = 250
#else:
# weightname=sys.argv[2]
# tempna='./'
# name=tempna+weightname
# test_only=0
N=min(10,args.shot_size)
class custom_dset(Dataset):
def __init__(self,
img_path,
poreimgs,
nonporeimgs,
poreimgs_shot,
nonporeimgs_shot,
img_transform1,
img_transform2,
study
):
#load 100 first images
self.study = study
#print(poreimgs)
if study == 'train':
poreimgs = poreimgs+poreimgs_shot
nonporeimgs = nonporeimgs+nonporeimgs_shot
self.size = len(poreimgs)
#print(poreimgs_shot)
self.poreimgs_list = [
os.path.join(img_path+'\\'+pore_folder+'\\', i) for i in poreimgs
]
self.nonporeimgs_list = [
os.path.join(img_path+'\\'+nonpore_folder+'\\', i) for i in nonporeimgs
]
self.poreimgs_list_shot = [
os.path.join(img_path+'\\'+pore_folder+'\\', i) for i in poreimgs_shot
]
self.nonporeimgs_list_shot = [
os.path.join(img_path+'\\'+nonpore_folder+'\\', i) for i in nonporeimgs_shot
]
shuffle1 = np.arange(self.size*2);np.random.shuffle(shuffle1)
shuffle2 = np.arange(self.size*2);np.random.shuffle(shuffle2)
self.labels1 = np.concatenate((np.ones(int(self.size)),np.zeros(int(self.size))),axis=0)[shuffle1]
self.labels2 = np.concatenate((np.ones(int(self.size)),np.zeros(int(self.size))),axis=0)[shuffle2]
print(len(self.poreimgs_list),len(self.poreimgs_list_shot),self.size)
self.img1_list = np.concatenate((self.poreimgs_list[0:int(self.size)],self.nonporeimgs_list[0:int(self.size)]),axis=0)[shuffle1]
print(self.size/len(self.poreimgs_list_shot),len(self.nonporeimgs_list_shot*int(self.size/len(self.nonporeimgs_list_shot))),len(self.img1_list))
self.img2_list = np.concatenate((self.poreimgs_list_shot*int(np.floor(self.size/len(self.poreimgs_list_shot))),self.poreimgs_list_shot[0:self.size%len(self.poreimgs_list_shot)],self.nonporeimgs_list_shot*int(np.floor(self.size/len(self.nonporeimgs_list_shot))),self.nonporeimgs_list_shot[0:self.size%len(self.nonporeimgs_list_shot)]),axis=0)[shuffle2]
#compute logical XNOR
self.label_list = np.logical_and(np.logical_or(self.labels1,np.logical_not(self.labels2)),np.logical_or(self.labels2,np.logical_not(self.labels1)))
self.img_transform1 = img_transform1
self.img_transform2 = img_transform2
#self.imgs_class1 = img_class1
#self.imgs_class2 = img_class2
def __getitem__(self, index):
if (np.random.random()>0.5 and index==0):# and self.study == 'train'):
self.shuffle()
if self.study == 'train':
print("Training set shuffled")
else:
print("Testing set shuffled")
img1_path = self.img1_list[index]
img2_path = self.img2_list[index]
label = self.label_list[index]
label=int(label)
rand1 = False
rand2 = False
# add noise during training
if (random.random()>0.995 and self.study=='train'):
img1 = np.random.rand(224,224,3)*255
rand1 =True
label =0
else:
img1 = cv2.imread(img1_path)
#if (random.random()>0.995 and self.study=='train'):
# img2 = np.random.rand(224,224,3)*255
# rand2 = True
# label =0
#else:
# img2 = cv2.imread(img2_path)
img2 = cv2.imread(img2_path)
if rand1 and rand2:
label = 1
#print(rand1,rand2)
img1 = img1.astype(np.float)/255
img2 = img2.astype(np.float)/255
#img1 = cv2.resize(img1,(224,224), interpolation = cv2.INTER_AREA)
#img2 = cv2.resize(img2,(224,224), interpolation = cv2.INTER_AREA)
img1 = self.img_transform1(img1)
img2 = self.img_transform2(img2)
#else:
# img2 = np.random.rand(224,224,3).astype(np.float)
# label = int(0)
return img1,img2,label
def __len__(self):
return len(self.label_list)
def shuffle(self):
shuffle1 = np.arange(self.size*2);np.random.shuffle(shuffle1)
shuffle2 = np.arange(self.size*2);np.random.shuffle(shuffle2)
self.labels1 = np.concatenate((np.ones(int(self.size)),np.zeros(int(self.size))),axis=0)[shuffle1]
self.labels2 = np.concatenate((np.ones(int(self.size)),np.zeros(int(self.size))),axis=0)[shuffle2]
self.img1_list = np.concatenate((self.poreimgs_list[0:int(self.size)],self.nonporeimgs_list[0:int(self.size)]),axis=0)[shuffle1]
self.img2_list = np.concatenate((self.poreimgs_list_shot*int(np.floor(self.size/len(self.poreimgs_list_shot))),self.poreimgs_list_shot[0:self.size%len(self.poreimgs_list_shot)],self.nonporeimgs_list_shot*int(np.floor(self.size/len(self.nonporeimgs_list_shot))),self.nonporeimgs_list_shot[0:self.size%len(self.nonporeimgs_list_shot)]),axis=0)[shuffle2]
self.label_list = np.logical_and(np.logical_or(self.labels1,np.logical_not(self.labels2)),np.logical_or(self.labels2,np.logical_not(self.labels1)))
class Rescale(object):
def __call__(self, img):
if random.random()<0.0:
f = round(0.1*random.randint(7, 13),2)
if f>1:
img = cv2.resize(img,None,fx=f, fy=f, interpolation = cv2.INTER_CUBIC)
a = int(round((f*224-224)/2))
img = img[a:a+224,a:a+224]
else:
img = cv2.resize(img,None,fx=f, fy=f, interpolation = cv2.INTER_AREA)
a= int(round((224-f*224)/2))
temp=np.zeros([224,224,3],dtype=np.uint8)
temp.fill(0)
for i in range(img.shape[0]):
for j in range(img.shape[1]):
temp[i+a,j+a]=img[i,j]
img=temp
return img
class Flip(object):
def __call__(self,img):
if random.random()<0.25:
return cv2.flip(img,1)
return img
class Rotate(object):
def __call__(self,img):
if random.random()<0.25:
angle=random.random()*60-30
rows,cols,cn = img.shape
M = cv2.getRotationMatrix2D((cols/2,rows/2),angle,1)
img = cv2.warpAffine(img,M,(cols,rows))
return img
return img
class Translate(object):
def __call__(self,img):
if random.random()<0.00:
x=random.random()*20-10
y=random.random()*20-10
rows,cols,cn = img.shape
M= np.float32([[1,0,x],[0,1,y]])
img = cv2.warpAffine(img,M,(cols,rows))
return img
# load pretrained model
resnet18 = models.resnet18(pretrained=True)
my_model = nn.Sequential(*list(resnet18.children())[:-2])
my_model = my_model.cuda()
class Cnn(nn.Module):
def __init__(self):
super(Cnn, self).__init__()
#unused with resnet18
self.conv1 = nn.Sequential(
nn.Conv2d(3, 64, 7, 1, 0),
nn.ReLU(),
#nn.BatchNorm2d(64),
nn.MaxPool2d(2, 2),
)
self.conv2 = nn.Sequential(
nn.Conv2d(64, 128, 7, 1, 0),
nn.ReLU(),
#nn.BatchNorm2d(128),
nn.MaxPool2d(2, 2),
)
self.conv3 = nn.Sequential(
nn.Conv2d(128, 256, 7, 1, 0),
nn.ReLU(),
#nn.BatchNorm2d(256),
nn.MaxPool2d(2, 2),
)
self.conv4 =nn.Sequential(
nn.Conv2d(256, 512, 7, 1, 0),
nn.ReLU(),
nn.MaxPool2d(2, 2),
)
# used fully connected layers with resnet18
self.fc = nn.Sequential(
nn.Linear(25088, 2048),
nn.ReLU(),
#nn.BatchNorm1d(512),
)
self.fc2 = nn.Sequential(
nn.Linear(2048, 1024),
nn.Sigmoid(),
#nn.BatchNorm1d(512),
)
# fc2 outputs encodes an image to a 1024 vector space
# loss function classifies based on distances within this space
def forward(self, x):
#print(x.shape)
x = x.view(-1,3, 224,224)
#print(x.shape)
x = my_model(x)
#print(x.shape)
#print(x.shape)
#x = self.conv1(x)
#x = self.conv2(x)
#x = self.conv3(x)
#x = self.conv4(x)
#print(x.shape)
x = x.view(x.size(0), -1)
#print(x.shape)
x = self.fc(x)
x = self.fc2(x)
#print(x.shape)
return x
def save_model(name,model,poreimgs,nonporeimgs,shot_size,train_size,val_size,test_size):
save_dict = {'model':model.state_dict(),
'poreimgs':poreimgs,
'nonporeimgs':nonporeimgs,
'shot':shot_size,
'train':train_size,
'val':val_size,
'test':test_size}
torch.save(save_dict, name)
def load_model(name):
save_dict = torch.load(name)
net_dic = save_dict['model']
poreimgs = save_dict['poreimgs']
nonporeimgs = save_dict['nonporeimgs']
shot = save_dict['shot']
train_size = save_dict['train']
test_size = save_dict['val']
final_test_size = save_dict['test']
return net_dic,poreimgs[0:shot],nonporeimgs[0:shot],poreimgs[shot:shot+train_size],nonporeimgs[shot:shot+train_size],poreimgs[shot+train_size:shot+train_size+test_size],nonporeimgs[shot+train_size:shot+train_size+test_size],poreimgs[shot+train_size+test_size:final_test_size],nonporeimgs[shot+train_size+test_size:final_test_size]
if __name__ == '__main__':
transform1 = transforms.Compose([Rescale(),Flip(),Translate(),Rotate(),transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
transform2 = transforms.Compose([Rescale(),Flip(),Translate(),Rotate(),transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
net=Cnn()
poreimgs_list = os.listdir(workingdir+'\\'+pore_folder)
nonporeimgs_list = os.listdir(workingdir+'\\'+nonpore_folder)
print(len(poreimgs_list),len(nonporeimgs_list),train_size)
test_size = min(int(np.floor((len(poreimgs_list)-shot-train_size)*0.5/10)*10),int(np.floor((len(nonporeimgs_list)-shot-train_size)*0.5/10)*10))
final_test_size = min(int(np.floor(len(poreimgs_list)/10)*10),int(np.floor(len(nonporeimgs_list)/10)*10))
print(train_size,test_size,final_test_size)
# generate train, validation, test sets
random.shuffle(poreimgs_list)
random.shuffle(nonporeimgs_list)
poreimgs_shot = poreimgs_list[0:shot]
nonporeimgs_shot = nonporeimgs_list[0:shot]
poreimgs_train = poreimgs_list[shot:train_size+shot]
nonporeimgs_train = nonporeimgs_list[shot:train_size+shot]
poreimgs_val = poreimgs_list[train_size+shot:test_size+train_size+shot]
nonporeimgs_val = nonporeimgs_list[train_size+shot:test_size+train_size+shot]
poreimgs_test = poreimgs_list[test_size+train_size+shot:final_test_size]
nonporeimgs_test = nonporeimgs_list[test_size+train_size+shot:final_test_size]
#print(poreimgs_list,nonporeimgs_list)
if test_only:
print("loading")
# load saved sets from model
net_dic,poreimgs_shot,nonporeimgs_shot,poreimgs_train,nonporeimgs_train,poreimgs_val,nonporeimgs_val,poreimgs_test,nonporeimgs_test = load_model(load_name)
net.load_state_dict(net_dic)
elif model_only:
print("loading")
net_dic,_,_,_,_,_,_,_,_ = load_model(load_name)
net.load_state_dict(net_dic)
print("Validation size is: "+str(len(poreimgs_val)))
print("Test size is: "+str(len(poreimgs_test)))
if torch.cuda.is_available() :
net = net.cuda()
train_set = custom_dset(workingdir,poreimgs_train, nonporeimgs_train, poreimgs_shot, nonporeimgs_shot, transform1,transform2,'train')
train_loader = DataLoader(train_set, batch_size=N, shuffle=False, num_workers=5,pin_memory=True,persistent_workers=True)
val_set = custom_dset(workingdir,poreimgs_val, nonporeimgs_val,poreimgs_shot, nonporeimgs_shot,transform1,transform2,'test')
val_loader = DataLoader(val_set, batch_size=N, shuffle=False, num_workers=5,pin_memory=True,persistent_workers=True)
lr = args.learning_rate
num_epoches = args.epoch
optimizer = torch.optim.Adam(net.parameters(), lr)
feature_encoder_scheduler = StepLR(optimizer,step_size=10,gamma=0.01)
class ContrastiveLoss(nn.Module):
def __init__(self, margin=1.0):
super(ContrastiveLoss, self).__init__()
self.margin = margin
def forward(self, output1, output2, label):
euclidean_distance = F.pairwise_distance(output1, output2)
euclidean_distance = F.pairwise_distance(output1, output2)
loss_contrastive = torch.mean((label) * torch.pow(euclidean_distance, 2) + (1-label) * torch.pow(torch.clamp(self.margin - euclidean_distance, min=0.0), 2)+
(label) * torch.pow(euclidean_distance, 2) + (1-label) * torch.pow(torch.clamp(self.margin - euclidean_distance, min=0.0), 2))
return loss_contrastive
loss_func = ContrastiveLoss()
l_his=[]
acc_hist = []
if test_only==0:
acc = 0
for epoch in range(num_epoches):
print('Epoch:', epoch + 1, 'Training...')
running_loss = 0.0
for i,data in enumerate(train_loader, 0):
image1s,image2s,labels=data
if torch.cuda.is_available():
image1s = image1s.cuda()
image2s = image2s.cuda()
labels = labels.cuda()
image1s, image2s, labels = Variable(image1s), Variable(image2s), Variable(labels.float())
optimizer.zero_grad()
f1=net(image1s.float())
f2=net(image2s.float())
loss = loss_func(f1,f2,labels)
loss.backward()
optimizer.step()
#print(i)
# print statistics
running_loss += loss
running_loss = running_loss / (i+1)
print('[%d] loss: %.3f' %
(epoch + 1, running_loss))
l_his.append(running_loss.cpu().detach().numpy())
correct = 0
total = 0
for datat in val_loader:
image1st,image2st,labelst = datat
if torch.cuda.is_available():
image1st = image1st.cuda()
image2st = image2st.cuda()
labelst = labelst.cuda()
f1=net(image1st.float())
f2=net(image2st.float())
dist = F.pairwise_distance(f1, f2)
dist = dist.cpu()
for j in range(dist.size()[0]):
if ((dist.data.numpy()[j]<0.7)):
if labelst.cpu().data.numpy()[j]==1:
correct +=1
else:
if labelst.cpu().data.numpy()[j]==0:
correct+=1
total+=1
curr_acc = 100.0 * correct / total
print('Accuracy of the network on the validation images: %0.2f %%' % (
curr_acc))
if curr_acc > acc:
save_model(name,net,poreimgs_list,nonporeimgs_list,shot,train_size,test_size,final_test_size)
acc = curr_acc
acc_hist.append(curr_acc)
fig = plt.figure()
ax = plt.subplot(111)
ax.plot(acc_hist)
plt.xlabel('Epoch')
plt.ylabel('Acc')
try:
fig.savefig('plots\\plott_acc'+clas+'.png')
except:
print('save failed for some reason')
plt.close()
fig = plt.figure()
ax = plt.subplot(111)
ax.plot(l_his)
plt.xlabel('Epoch')
plt.ylabel('Loss')
try:
fig.savefig('plots\\plot_loss'+clas+'.png')
except:
print('save failed for some reason')
plt.close()
# if accuracy does not increase during patiance then overfitting likely occured
if (np.array(acc_hist[-patiance:])<max(acc_hist)).all():
break
print('Finished Training')
save_model('weight\\weight_final'+clas+'.pt',net,poreimgs_list,nonporeimgs_list,shot,train_size,test_size,final_test_size)
#torch.save(net.state_dict(), 'weight\\weight_final_B4C.pt')
else:
test_set = custom_dset(workingdir,poreimgs_test, nonporeimgs_test,poreimgs_shot, nonporeimgs_shot,transform1,transform2,'test')
test_loader = DataLoader(test_set, batch_size=N, shuffle=False, num_workers=5,pin_memory=True,persistent_workers=True)
#transform = transforms.Compose([transforms.ToTensor(),
# transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
#val_set = custom_dset(workingdir,transform,transform,'train')
#val_loader = DataLoader(val_set, batch_size=N, shuffle=True, num_workers=2)
correct = 0
total = 0
for data in val_loader:
image1s,image2s,labels = data
if torch.cuda.is_available():
image1s = image1s.cuda()
image2s = image2s.cuda()
labels = labels.cuda()
image1s, image2s, labels = Variable(image1s), Variable(image2s), Variable(labels.float())
f1=net(image1s.float())
f2=net(image2s.float())
dist = F.pairwise_distance(f1, f2)
dist = dist.cpu()
for j in range(dist.size()[0]):
if ((dist.data.numpy()[j]<0.7)):
if labels.cpu().data.numpy()[j]==1:
correct +=1
total+=1
else:
total+=1
else:
if labels.cpu().data.numpy()[j]==0:
correct+=1
total+=1
else:
total+=1
print('Accuracy of the network on the validation images: %d %%' % (
100 * correct / total))
#val_set = custom_dset(workingdir,transform,transform,'test')
#val_loader = DataLoader(val_set, batch_size=N, shuffle=True, num_workers=2)
correct = 0
total = 0
for data in test_loader:
image1s,image2s,labels = data
if torch.cuda.is_available():
image1s = image1s.cuda()
image2s = image2s.cuda()
labels = labels.cuda()
image1s, image2s, labels = Variable(image1s), Variable(image2s), Variable(labels.float())
f1=net(image1s.float())
f2=net(image2s.float())
dist = F.pairwise_distance(f1, f2)
dist = dist.cpu()
for j in range(dist.size()[0]):
if ((dist.data.numpy()[j]<0.7)):
if labels.cpu().data.numpy()[j]==1:
correct +=1
total+=1
else:
total+=1
else:
if labels.cpu().data.numpy()[j]==0:
correct+=1
total+=1
else:
total+=1
print('Accuracy of the network on the test images: %d %%' % (
100 * correct / total))