-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfnirsapp_sourcedata2bids.py
executable file
·279 lines (230 loc) · 10.1 KB
/
fnirsapp_sourcedata2bids.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
#!/usr/bin/env python3
import pandas as pd
import numpy as np
import mne
import mne_nirs
import os
import argparse
from mne_bids import BIDSPath, write_raw_bids, stats
from mne_nirs.io.snirf import write_raw_snirf
from mne.utils import logger
from glob import glob
import os.path as op
import json
import subprocess
from pathlib import Path
from datetime import datetime
import json
import hashlib
from checksumdir import dirhash
from pprint import pprint
__version__ = "v0.4.5"
def fnirsapp_sourcedata2bids(command, env={}):
merged_env = os.environ
merged_env.update(env)
process = subprocess.Popen(command, stdout=subprocess.PIPE,
stderr=subprocess.STDOUT, shell=True,
env=merged_env)
while True:
line = process.stdout.readline()
line = str(line, 'utf-8')[:-1]
print(line)
if line == '' and process.poll() != None:
break
if process.returncode != 0:
raise Exception("Non zero return code: %d" % process.returncode)
parser = argparse.ArgumentParser(description='Scalp coupling index')
parser.add_argument('--input-datasets', default="/bids_dataset", type=str,
help='The directory with the input dataset '
'formatted according to the BIDS standard.')
parser.add_argument('--events', type=json.loads,
help='Event labels.')
parser.add_argument('--duration', type=float, default=1.0,
help='Duration of stimulus.')
parser.add_argument('--optode-frame', type=str, default="",
help='Coordinate frame used for the optode positions.')
parser.add_argument('--subject-label',
help='The label(s) of the participant(s) that should be '
'analyzed. The label corresponds to '
'sub-<subject-label> from the BIDS spec (so it does '
'not include "sub-"). If this parameter is not provided '
'all subjects should be analyzed. Multiple participants '
'can be specified with a space separated list.',
nargs="+")
parser.add_argument('--session-label',
help='The label(s) of the session(s) that should be '
'analyzed. The label corresponds to '
'ses-<session-label> from the BIDS spec (so it does '
'not include "ses-"). If this parameter is not provided '
'all sessions should be analyzed. Multiple sessions '
'can be specified with a space separated list.',
nargs="+")
parser.add_argument('--task-label',
help='The label(s) of the tasks(s) that should be '
'analyzed. If this parameter is not provided '
'all tasks should be analyzed. Multiple tasks '
'can be specified with a space separated list.',
nargs="+")
parser.add_argument('-v', '--version', action='version',
version='BIDS-App Scalp Coupling Index version '
f'{__version__}')
args = parser.parse_args()
def create_report(app_name=None, pargs=None):
exec_rep = dict()
exec_rep["ExecutionStart"] = datetime.now().isoformat()
exec_rep["ApplicationName"] = app_name
exec_rep["ApplicationVersion"] = __version__
exec_rep["Arguments"] = vars(pargs)
return exec_rep
exec_files = dict()
exec_rep = create_report(app_name="fNIRS-Apps: Sourcedata 2 BIDS", pargs=args)
pprint(exec_rep)
mne.set_log_level("INFO")
logger.info("\n")
########################################
# Extract parameters
########################################
logger.info("Extracting subject metadata.")
subs = []
if args.subject_label:
logger.info(" Subject data provided as input argument.")
subs = args.subject_label
else:
logger.info(" Subject data will be extracted from data.")
subject_dirs = glob(op.join(args.input_datasets, "sourcedata/sub-*"))
subs = [subject_dir.split("-")[-1] for
subject_dir in subject_dirs]
logger.info(f" Subjects: {subs}")
logger.info("Extracting session metadata.")
sess = []
if args.session_label:
logger.info(" Session data provided as input argument.")
sess = args.session_label
else:
logger.info(" Session data will be extracted from data.")
session_dirs = glob(op.join(args.input_datasets, "sourcedata/sub-*/ses-*/"))
sess = [session_dir.split("-")[-1].replace("/", "") for
session_dir in session_dirs]
sess = np.unique(sess)
if len(sess) == 0:
sess = [None]
logger.info(f" Sessions: {sess}")
logger.info("Extracting tasks metadata.")
tasks = []
if args.task_label:
logger.info(" Task data provided as input argument.")
tasks = args.task_label
else:
raise ValueError(f"You must specify a task label, received {args.task_label}")
logger.info(f" Tasks: {tasks}")
logger.info("Extracting event metadata.")
events = []
if args.events:
logger.info(" Event data provided as input argument.")
# Convert to int keys
_events = args.events
trial_type = dict()
event_codes = dict()
for event in _events:
trial_type[int(event)] = _events[event]
event_codes[str(float(event))] = int(event)
logger.info(f" Events: {trial_type}")
logger.info(f" Codes: {event_codes}")
else:
logger.info(" No event data provided, using default coding.")
reader_kwargs = dict()
if args.optode_frame != '':
logger.info(f"Using {args.optode_frame} optode frame.")
reader_kwargs["optode_frame"] = args.optode_frame
########################################
# Handle different inputs
########################################
def find_sourcedata(dir):
"""
Return path to preferred datatype, reader function, and hash of data.
Will return type in this preference order.
1. SNIRF files
2. Directories
In the future more options should be added.
"""
filenames_to_ignore = ['.DS_Store']
sourcedata_types = [".snirf"]
sourcedata_readers = [mne.io.read_raw_snirf]
all_data = os.listdir(dir.directory)
for bad in filenames_to_ignore:
if bad in all_data:
all_data.remove(bad)
for type, reader in zip(sourcedata_types, sourcedata_readers):
if any([a.endswith(type) for a in all_data]):
idx = np.where([a.endswith(type) for a in all_data])[0][0]
dpath = os.path.join(dir.directory, all_data[idx])
return dpath, reader, hashlib.md5(open(dpath, 'rb').read()).hexdigest()
if any([os.path.isdir(os.path.join(dir.directory, a)) for a in all_data]):
idx = np.where([os.path.isdir(os.path.join(dir.directory, a)) for a in all_data])[0][0]
dpath = os.path.join(dir.directory, all_data[idx])
return dpath, mne.io.read_raw_nirx, dirhash(dpath, 'md5')
logger.warn(f"Unknown error for file: {dir.directory}")
return 0, 0, 0
########################################
# Main script
########################################
print(" ")
for sub in subs:
for task in tasks:
for ses in sess:
# Present information
logger.info(f"Processing: sub-{sub}/ses-{ses}")
exec_files[f"sub-{sub}_ses-{ses}_task-{task}"] = dict()
# Locate files
b_path = BIDSPath(subject=sub, task=task, session=ses,
root=f"{args.input_datasets}/sourcedata",
datatype="nirs", suffix="nirs",
extension=".snirf")
# Determine the data type of file and appropriate reader
data_path, readfn, hash = find_sourcedata(b_path)
# Present information
logger.debug(f" Using sourcedata: {data_path}")
exec_files[f"sub-{sub}_ses-{ses}_task-{task}"]["InputName"] = str(data_path)
exec_files[f"sub-{sub}_ses-{ses}_task-{task}"]["InputHash"] = hash
# Read data
raw = readfn(data_path, preload=False, **reader_kwargs)
# Rewrite as SNIRF
snirf_path = os.path.join(b_path.directory, b_path.basename)
logger.debug(f" Writing SNIRF to: {snirf_path}")
write_raw_snirf(raw, snirf_path)
# Reread SNIRF
raw = mne.io.read_raw_snirf(snirf_path, preload=False)
# Handle renaming and duration of events
if args.events:
try:
# NIRx use floats as key values
events, event_id = mne.events_from_annotations(raw, event_codes)
except ValueError:
try:
# SNIRF Files use integer values as keys
int_ev_codes = {str(int(float(k))): event_codes[k] for k in event_codes.keys()}
events, event_id = mne.events_from_annotations(raw, int_ev_codes)
except ValueError:
events, event_id = mne.events_from_annotations(raw)
raw.set_annotations(
mne.annotations_from_events(events, raw.info['sfreq'],
event_desc=trial_type))
raw.annotations.duration = np.ones(raw.annotations.duration.shape) *\
args.duration
# Add additional info
raw.info['line_freq'] = 50
# Final write as BIDS format
bids_path = BIDSPath(subject=sub, task=task, session=ses,
datatype='nirs', root=f"{args.input_datasets}")
bids_path = write_raw_bids(raw, bids_path, overwrite=True)
os.remove(snirf_path)
exec_files[f"sub-{sub}_ses-{ses}_task-{task}"]["OutputFileHash"] = \
hashlib.md5(open(bids_path.fpath, 'rb').read()).hexdigest()
exec_rep["Files"] = exec_files
exec_path = f"{args.input_datasets}/execution"
exec_rep["ExecutionEnd"] = datetime.now().isoformat()
pprint(exec_rep)
Path(exec_path).mkdir(parents=True, exist_ok=True)
with open(f"{exec_path}/{exec_rep['ExecutionStart'].replace(':', '-')}-sourcedata2bids.json", "w") as fp:
json.dump(exec_rep, fp)
pprint(stats.count_events(args.input_datasets))