-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprofile_classifier.py
240 lines (188 loc) · 11 KB
/
profile_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import os
import numpy as np
import nltk
import tensorflow as tf
############# File Clean-up ################################
''' Steps:
1. Tag sentence and keep only lemmatized Nouns and Verbs
2. For every entry remove duplicate words.
3. Return number of negative samples and positive samples.
'''
def file_cleanup():
num_nsamples, num_psamples = 0, 0 # Store number of negative samples and positive samples
f_clean = open('clean_file.txt', 'w')
for file in ['neg_samples.txt', 'pos_samples.txt', 'profile.txt']:
#for file in ['test.txt']: # test feature
with open(file, 'r') as f_sample:
for line in f_sample:
tagged_line = nltk.pos_tag(nltk.word_tokenize(line)) # Tag line
imp_words = [nltk.WordNetLemmatizer().lemmatize(i.lower(), j[0].lower()) for i, j in tagged_line if j[0] in ['N', 'V']] # Lemmatize and keep only Nouns and Verbs
imp_words = [i for i in imp_words if (i[0].isalpha() and len(i) > 2)] # Keep only words that are more than 2 letters
uniq_words = sorted(set(imp_words)) # Remove duplicate words
uniq_line = " ".join(str(i) for i in uniq_words) # Make a line for writing into a file
f_clean.write('%s\n' %uniq_line)
if file == 'neg_samples.txt':
num_nsamples += 1
elif file == 'pos_samples.txt':
num_psamples += 1
f_clean.close()
return num_nsamples, num_psamples
############# Files to Binary Vector #######################
''' Steps:
1. Open clean.txt and combine all individually uniquified sentences.
2. Remove duplicates in this combined line to get all the unique words in the file.
3. Create feature vectors for each sample based on these unique words.
4. Save the feature vectors into vector_file.txt
'''
def vectorize_file(num_nsamples, num_psamples):
with open('clean_file.txt', 'r') as f_clean:
#with open('test.txt', 'r') as file: # testing
combined_line = " ".join(line for line in f_clean) # Combine all the lines from clean_file.txt
tokenized_combined_line = nltk.word_tokenize(combined_line) # Tokenize the combined lines
# Clean-up: Drop non-alhpnumeric words and small (< 2 letter) words
tokenized_combined_line = [i for i in tokenized_combined_line if (i[0].isalpha() and len(i) > 2)]
uniq_token_line = sorted(set(tokenized_combined_line)) # Uniquify the combined_line
vector_len = len(uniq_token_line) # Number of unique words in uniq_token_line
f_vector = open('vector_file.txt', 'w')
with open('clean_file.txt', 'r') as f_clean:
#with open('test.txt', 'r') as f_clean: # test feature
current_line = 0
for line in f_clean:
current_line = current_line + 1 # Keep track of current line number for adding label
tokenized_line = nltk.word_tokenize(line)
feature_vector = format(0, '0%sb' %vector_len) # Instantiate a default feature vector with vector_len number of 0s
feature_vector_list = list(feature_vector) # Convert into a list for easy manipulation of list members
# Create feature vector for the line
# For every word in tokenized_line assert (set to 1) the appropriate list member of feature_vector_list
for i in tokenized_line:
for j in range(vector_len):
if i == uniq_token_line[j]:
feature_vector_list[j] = '1'
else:
continue
# Adding labels to the features
if current_line < (num_nsamples + 1):
label = '0'
elif current_line < (num_nsamples + num_psamples + 1):
label = '1'
else:
label = ''
# Join all list members and label
feature_vector = ''.join('%s%s' %((''.join(feature_vector_list), label)))
# Save feature vector to file
f_vector.write('%s\n' %feature_vector)
f_vector.close()
return uniq_token_line
############# Binary Vectors to labelled data for NN #######################
''' Steps:
1. From vector_file.txt create a labelled data matrix that can be fed to the neural network.
2. Each line of the vector_file.txt is converted into a column of the labelled data matrix.
'''
def vector_file2labelled_data():
with open ('vector_file.txt', 'r') as f_vector:
labelled_data_list = [] # Empty labelled_data_list
# Populate labelled_data_list with lines from vector_file.txt
for line in f_vector:
bin_string = line.strip('\n') # Remove \n from the end of the line
bin_string_list = list(bin_string) # Convert bin_string to list
labelled_data_list.append([int(bin_string_list[i]) for i in range(len(bin_string_list))]) # Append each sample to labelled_data_list list
# labelled_data matrix from labelled_data_list
labelled_data = np.matrix(labelled_data_list[0:np.size(labelled_data_list) - 1])
# Features of the profile from labelled_data_list
profile_features = np.matrix(labelled_data_list[np.size(labelled_data_list) - 1])
return labelled_data, profile_features
############# Neural Network #######################
def nn(labelled_data, prediction_features, hidden1_units):
# Random array generation for selecting training, cross-validation and test samples
features_size = np.size(labelled_data, 1) - 1 # Number of features
samples_size = np.size(labelled_data, 0) # Number of samples
rand_arr = np.arange(samples_size) # Random array for shuffling samples
np.random.shuffle(rand_arr)
# Training Samples
train_size = int(np.floor(0.9 * samples_size)) # Number of training samples
train_inputs = labelled_data[rand_arr[0:train_size], 0:features_size] # Training features
train_labels = labelled_data[rand_arr[0:train_size], features_size] # Training labels
# Cross Validation Samples
#crossval_size = samples_size - train_size # Number of cross validation samples
crossval_size = int(np.floor(0.05 * samples_size))
crossval_inputs = labelled_data[rand_arr[train_size:train_size + crossval_size], 0:features_size] # Cross Validation features
crossval_labels = labelled_data[rand_arr[train_size:train_size + crossval_size], features_size] # Cross Validation labels
# Test Samples
test_size = samples_size - (train_size + crossval_size)
test_inputs = labelled_data[rand_arr[train_size + crossval_size:samples_size], 0:features_size] # Test features
test_labels = labelled_data[rand_arr[train_size + crossval_size:samples_size], features_size] # Test labels
# Input Features
a0 = tf.placeholder(tf.float32, [None, features_size])
# Hidden Layer 1
W1 = tf.Variable(tf.truncated_normal([features_size, hidden1_units],
stddev=1.0 / np.sqrt(float(features_size))), name='W1')
b1 = tf.Variable(tf.zeros([hidden1_units]), name='b1')
a1 = tf.nn.sigmoid(tf.matmul(a0, W1) + b1)
# Final Layer Shallow
W_final = tf.Variable(tf.truncated_normal([hidden1_units, 1],
stddev=1.0 / np.sqrt(float(hidden1_units))), name='W_final')
b_final = tf.Variable(tf.zeros([1]), name='b_final')
y = tf.nn.sigmoid(tf.matmul(a1, W_final) + b_final)
## # Hidden Layer 2
## W2 = tf.Variable(tf.truncated_normal([hidden1_units, hidden2_units],
## stddev=1.0 / np.sqrt(float(hidden1_units))), name='W2')
## b2 = tf.Variable(tf.zeros([hidden2_units]), name='b2')
## a2 = tf.nn.sigmoid(tf.matmul(a1, W2) + b2)
##
## # Final Layer
## W_final = tf.Variable(tf.truncated_normal([hidden2_units, 1],
## stddev=1.0 / np.sqrt(float(hidden2_units))), name='W_final')
## b_final = tf.Variable(tf.zeros([1]), name='b_final')
##
## y = tf.nn.sigmoid(tf.matmul(a2, W_final) + b_final)
# Labels
y_ = tf.placeholder(tf.float32, [None, 1])
# Loss
loss = tf.reduce_mean(tf.square(y - y_))
# Initialize Session
sess = tf.InteractiveSession()
tf.global_variables_initializer().run()
#Train
learning_rate = 0.5
steps = 1000
train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)
for i in range(steps):
sess.run(train_step, feed_dict={a0: train_inputs,
y_: train_labels})
if np.mod(i, 100) == 0:
print('%d: %f' %(i, sess.run(tf.reduce_mean(loss), feed_dict={a0: train_inputs,
y_: train_labels})))
# Cross Validation Error
print('Cross Validation Error: %f' %sess.run(tf.reduce_mean(loss), feed_dict={a0: crossval_inputs,
y_: crossval_labels}))
# Test Results
for i in range(test_size):
results = int(sess.run(y, feed_dict={a0: test_inputs[i],
y_: test_labels[i]}) > 0.8)
## results = sess.run(y, feed_dict={a0: test_inputs[i],
## y_: test_labels[i]})
print('Label: %d Prediction: %f' %(test_labels[i], results))
# Prediction
print('Prediction: %f (True if > 0.8)' %(sess.run(y, feed_dict={a0: prediction_features})))
def main():
# Cleanup the neg_samples.txt and pos_samples.txt files
# Creates clean_file.txt file with sorted, unique words
# Returns num_nsamples
num_nsamples, num_psamples = file_cleanup()
# Convert clean.txt to feature + labels file vector_file.txt
_ = vectorize_file(num_nsamples, num_psamples)
# Get labelled data from vector_file.txt
# Returns labelled data matrix
labelled_data, prediction_features = vector_file2labelled_data()
# Feed labelled_data, prediction_features to neural network
nn(labelled_data, prediction_features, 20)
def main_analysis():
num_nsamples, num_psamples = file_cleanup()
uniq_token_line = vectorize_file(num_nsamples, num_psamples)
uniq_token_line_array = np.array(uniq_token_line)
labelled_data, _ = vector_file2labelled_data()
# Sum the elements for all posititve samples row-wise (excluding the label column) and convert into array for list indexability
freq_words = np.squeeze(np.asarray(np.sum(labelled_data[num_nsamples : , : np.size(labelled_data, 1) -1], axis=0)))
n = 20
top_n_index = np.argsort(-freq_words)[:n]
print(uniq_token_line_array[top_n_index])