forked from dagush/WholeBrain
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_Speed_DecoEtAl2014.py
117 lines (100 loc) · 5.36 KB
/
test_Speed_DecoEtAl2014.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
# ==========================================================================
# ==========================================================================
# Computes the Functional Connectivity Dynamics (FCD)
#
# From the original code:
# --------------------------------------------------------------------------
#
# Computes simulations with the Dynamic Mean Field Model (DMF) using
# Feedback Inhibitory Control (FIC) and Regional Drug Receptor Modulation (RDRM):
#
# - the optimal coupling (we=2.1) for fitting the placebo condition
# - the optimal neuromodulator gain for fitting the LSD condition (wge=0.2)
#
# Taken from the code (FCD_LSD_simulated.m) from:
# [DecoEtAl_2018] Deco,G., Cruzat,J., Cabral, J., Knudsen,G.M., Carhart-Harris,R.L., Whybrow,P.C.,
# Whole-brain multimodal neuroimaging model using serotonin receptor maps explain non-linear functional effects of LSD
# Logothetis,N.K. & Kringelbach,M.L. (2018) Current Biology
# https://www.cell.com/current-biology/pdfExtended/S0960-9822(18)31045-5
#
# Code written by Gustavo Deco [email protected] 2017
# Reviewed by Josephine Cruzat and Joana Cabral
#
# Translated to Python by Gustavo Patow
# ==========================================================================
# ==========================================================================
import numpy as np
import scipy.io as sio
from pathlib import Path
import time
import functions.Models.DynamicMeanField as neuronalModel
import functions.Integrator_EulerMaruyama as integrator
integrator.neuronalModel = neuronalModel
integrator.verbose = False
import functions.simulateFCD as simulateFCD
from functions import BalanceFIC
BalanceFIC.integrator = integrator
# set BOLD filter settings
import functions.BOLDFilters as filters
filters.k = 2 # 2nd order butterworth filter
filters.flp = .02 # lowpass frequency of filter
filters.fhi = 0.1 # highpass
def my_hist(x, bin_centers):
bin_edges = np.r_[-np.Inf, 0.5 * (bin_centers[:-1] + bin_centers[1:]), np.Inf]
counts, edges = np.histogram(x, bin_edges)
return [counts, bin_centers]
# Load Structural Connectivity Matrix
print("Loading Data_Raw/all_SC_FC_TC_76_90_116.mat")
sc90 = sio.loadmat('Data_Raw/all_SC_FC_TC_76_90_116.mat')['sc90'] #load LSDnew.mat tc_aal
C=sc90/np.max(sc90[:])*0.2
NumSubjects = 10 # Number of Subjects in empirical fMRI dataset
print("Simulating {} subjects!".format(NumSubjects))
# ============================================================================
# ============= Compute the J values for Balance conditions ==================
# ============================================================================
# Define optimal parameters
neuronalModel.we = 2.1 # Global Coupling parameter
# ==== J is calculated this only once, then saved
BalanceFIC.baseName = "Data_Produced/SC90/J_Balance_we{}.mat"
neuronalModel.J = BalanceFIC.Balance_J9(neuronalModel.we, C)['J'].flatten()
# if not Path("Data_Produced/J_Balance_SC90.mat").is_file():
# from functions import BalanceFIC
# BalanceFIC.integrator = integrator
# print("Computing Data_Produced/J_Balance_SC90 !!!")
# neuronalModel.J=BalanceFIC.JOptim(C).flatten() # This is the Feedback Inhibitory Control
# sio.savemat('Data_Produced/J_Balance_SC90.mat', {'J': neuronalModel.J}) # save J_Balance J
# else:
# print("Loading Data_Produced/J_Balance_SC90 !!!")
# # ==== J can be calculated only once and then load J_Balance J
# neuronalModel.J = sio.loadmat('Data_Produced/J_Balance_SC90.mat')['J'].flatten()
np.random.seed(13)
# ============================================================================
# ============= Simulate =====================================================
# ============================================================================
wge = 0. # 0 for placebo, 0.2 for LSD
print("\n\nSTARTING TIME MEASUREMENT\n\n")
start_time = time.clock()
cotsampling_pla_s = simulateFCD.simulate(NumSubjects, C)
print("\n\n--- TOTAL TIME: {} seconds (was: {} seconds, initial: {} seconds)---\n\n".format(time.clock() - start_time, 1871.0590252101958, 6327.425539))
max=np.max(cotsampling_pla_s)
min=np.min(cotsampling_pla_s)
avg=np.average(cotsampling_pla_s)
var=np.var(cotsampling_pla_s)
print("Max={}, min={}, avg={}, var={}".format(max, min, avg, var))
print("Was=(0.9920881163830183, 0.003266796847684554, 0.4743004646754597, 0.03813424749641985)")
# sio.savemat('Data_Produced/FCD_values_placebo.mat', {'cotsampling_pla_s': cotsampling_pla_s}) # save FCD_values_placebo cotsampling_pla_s
# ============================================================================
# Plot
# ============================================================================
[h_pla, x1] = my_hist(cotsampling_pla_s[:].T.flatten(), np.arange(-.1, 1.025, .025))
import matplotlib.pyplot as plt
width=0.01
plaBar = plt.bar(x1, h_pla, width=width, color="red", label="Placebo")
plt.xlabel('FCD values')
plt.ylabel('Count')
plt.legend(handles=[plaBar], loc='upper right')
plt.title('Simulated data')
plt.show()
# ================================================================================================================
# ================================================================================================================
# ================================================================================================================EOF