-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerator.py
145 lines (115 loc) · 5.2 KB
/
generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
from transformers import AutoTokenizer, AutoModelForCausalLM
from numpy.random import choice
import torch
import torch.nn.functional as F
import pandas as pd
from io import BytesIO
from PIL import Image
from PIL import ImageFont
from PIL import ImageDraw
import requests
from pyunsplash import PyUnsplash
tokenizer = AutoTokenizer.from_pretrained('tokenizer')
model = AutoModelForCausalLM.from_pretrained('model')
class Generator():
api_key = open('unsplash_token.txt').read().split()[0]
unspl = PyUnsplash(api_key=api_key)
image_width = 1024
font_size = 60
line_size = round(image_width / font_size * 1.9)
font = ImageFont.truetype('impact.ttf', size=font_size)
text_colors = {'yellow': (254 ,253, 3), 'black': (0, 0, 0), 'white': (255, 255, 255)}
text_color_freq = (0.75, 0.2, 0.05)
stroke_width = 2
stroke_fill = 'black'
# гпт-генератор
def gptate(
self,
model,
tokenizer,
prompt,
entry_length=50, #maximum number of words
top_p=0.8,
temperature=1.,
):
model.eval()
generated_num = 0
generated_list = []
filter_value = -float("Inf")
with torch.no_grad():
entry_finished = False
generated = torch.tensor(tokenizer.encode(prompt)).unsqueeze(0)
for i in range(entry_length):
outputs = model(generated, labels=generated)
loss, logits = outputs[:2]
logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0)
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
sorted_indices_to_remove = cumulative_probs > top_p
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[
..., :-1
].clone()
sorted_indices_to_remove[..., 0] = 0
indices_to_remove = sorted_indices[sorted_indices_to_remove]
logits[:, indices_to_remove] = filter_value
next_token = torch.multinomial(F.softmax(logits, dim=-1), num_samples=1)
if next_token == tokenizer.encode('<|endoftext|>'):
break
generated = torch.cat((generated, next_token), dim=1)
output_list = list(generated.squeeze().numpy())
output_text = tokenizer.decode(output_list)
return output_text
# добавление разделителей строк, чтобы не залезали за край
def split_paragraphs(self, text, line_size=line_size):
paragraphs = ['']
for word in text.split(' '):
if len(paragraphs[-1] + ' ' + word) > line_size:
paragraphs.append(word)
else:
paragraphs[-1] = paragraphs[-1] + ' ' + word
return '\n'.join(paragraphs)[1:]
# генерация текста вообще
def generate_text(self, prompt=' '):
text = self.gptate(model.to('cpu'), tokenizer, prompt).upper()
try:
# обрезаем до последнего законченного
text = text[:text.rindex('.')]
except:
pass
return self.split_paragraphs(text)
# достаем картинку по запросу
def get_image(self, image_text, prev):
search = self.unspl.search(type_='photos', per_page=50, query=image_text)
# мы не хотим, чтобы картинки повторялись
for entry in search.entries:
if entry.id not in prev.unique():
image = Image.open(BytesIO(requests.get(entry.link_download).content))
return image.resize((self.image_width, round(image.size[1] / image.size[0] * self.image_width))), entry.id
return
# генерируем
def generate(self):
# мы не хотим, чтобы тексты повторялись
prev = pd.read_csv('bayan.csv')
print('generating text')
while True:
text = self.generate_text()
if text[:20] not in prev['text'].unique():
break
print('generating image')
image, image_id = self.get_image(text, prev['image'])
if not image:
self.generate()
# добавляем текст и картинку в список баянов
pd.concat((
prev,
pd.DataFrame({'text': [text[:20]], 'image': [image_id]}
))).to_csv('bayan.csv', index=False)
# рисуем
image_height = image.size[1]
draw = ImageDraw.Draw(image)
_, _, w, h = draw.textbbox((0, 0), text, font=self.font)
text_color = self.text_colors[choice(list(self.text_colors.keys()), 1, p=self.text_color_freq)[0]]
draw.text(((self.image_width - w) / 2, (image_height - h) / 20), text=text,
fill=text_color, font=self.font, align='center',
stroke_width=self.stroke_width, stroke_fill=self.stroke_fill)
return image