-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathmultiAgents.py
355 lines (280 loc) · 12.8 KB
/
multiAgents.py
1
# multiAgents.py# --------------# Licensing Information: You are free to use or extend these projects for # educational purposes provided that (1) you do not distribute or publish # solutions, (2) you retain this notice, and (3) you provide clear # attribution to UC Berkeley, including a link to # http://inst.eecs.berkeley.edu/~cs188/pacman/pacman.html# # Attribution Information: The Pacman AI projects were developed at UC Berkeley.# The core projects and autograders were primarily created by John DeNero # ([email protected]) and Dan Klein ([email protected]).# Student side autograding was added by Brad Miller, Nick Hay, and # Pieter Abbeel ([email protected]).from util import manhattanDistancefrom game import Directionsimport random, util, sysfrom game import Agentclass ReflexAgent(Agent): """ A reflex agent chooses an action at each choice point by examining its alternatives via a state evaluation function. The code below is provided as a guide. You are welcome to change it in any way you see fit, so long as you don't touch our method headers. """ def getAction(self, gameState): """ You do not need to change this method, but you're welcome to. getAction chooses among the best options according to the evaluation function. Just like in the previous project, getAction takes a GameState and returns some Directions.X for some X in the set {North, South, West, East, Stop} """ # Collect legal moves and successor states legalMoves = gameState.getLegalActions() # Choose one of the best actions scores = [self.evaluationFunction(gameState, action) for action in legalMoves] bestScore = max(scores) bestIndices = [index for index in range(len(scores)) if scores[index] == bestScore] chosenIndex = random.choice(bestIndices) # Pick randomly among the best "Add more of your code here if you want to" return legalMoves[chosenIndex] def evaluationFunction(self, currentGameState, action): """ Design a better evaluation function here. The evaluation function takes in the current and proposed successor GameStates (pacman.py) and returns a number, where higher numbers are better. The code below extracts some useful information from the state, like the remaining food (newFood) and Pacman position after moving (newPos). newScaredTimes holds the number of moves that each ghost will remain scared because of Pacman having eaten a power pellet. Print out these variables to see what you're getting, then combine them to create a masterful evaluation function. """ # Useful information you can extract from a GameState (pacman.py) successorGameState = currentGameState.generatePacmanSuccessor(action) newPos = successorGameState.getPacmanPosition() newFood = successorGameState.getFood() newGhostStates = successorGameState.getGhostStates() newScaredTimes = [ghostState.scaredTimer for ghostState in newGhostStates] score = successorGameState.getScore() if successorGameState.isWin(): return sys.maxint if successorGameState.isLose(): return -sys.maxint # Ghost distances minGhostDist = float("inf") ghostDists = [] for ghost in newGhostStates: ghostDists.append(util.manhattanDistance(ghost.getPosition(), newPos)) if len(ghostDists) > 0: minGhostDist = min(ghostDists) if minGhostDist < 3: score += 5 * minGhostDist # Food score minFoodDist = float("inf") foodDists = [] foodList = newFood.asList() i = 0 for food in foodList: foodDists.append(util.manhattanDistance(newPos, food) + i) i += 1 if len(foodDists) > 0: minFoodDist = min(foodDists) score -= minFoodDist return score def scoreEvaluationFunction(currentGameState): """ This default evaluation function just returns the score of the state. The score is the same one displayed in the Pacman GUI. This evaluation function is meant for use with adversarial search agents (not reflex agents). """ return currentGameState.getScore()class MultiAgentSearchAgent(Agent): """ This class provides some common elements to all of your multi-agent searchers. Any methods defined here will be available to the MinimaxPacmanAgent, AlphaBetaPacmanAgent & ExpectimaxPacmanAgent. You *do not* need to make any changes here, but you can if you want to add functionality to all your adversarial search agents. Please do not remove anything, however. Note: this is an abstract class: one that should not be instantiated. It's only partially specified, and designed to be extended. Agent (game.py) is another abstract class. """ def __init__(self, evalFn = 'scoreEvaluationFunction', depth = '2'): self.index = 0 # Pacman is always agent index 0 self.evaluationFunction = util.lookup(evalFn, globals()) self.depth = int(depth)class MinimaxAgent(MultiAgentSearchAgent): """ Your minimax agent (question 2) """ def getAction(self, gameState): """ Returns the minimax action from the current gameState using self.depth and self.evaluationFunction. Here are some method calls that might be useful when implementing minimax. gameState.getLegalActions(agentIndex): Returns a list of legal actions for an agent agentIndex=0 means Pacman, ghosts are >= 1 gameState.generateSuccessor(agentIndex, action): Returns the successor game state after an agent takes an action gameState.getNumAgents(): Returns the total number of agents in the game """ agentCount = gameState.getNumAgents() def multiminimax(state, depth, agentIndex): legalActions = state.getLegalActions(agentIndex) if depth == 0 or len(legalActions) == 0: return (None, self.evaluationFunction(state)) succAgentIndex = (agentIndex + 1) % agentCount succDepth = depth if succAgentIndex == 0: succDepth -= 1 resultAction = None if agentIndex == 0: resultValue = float("-inf") for action in legalActions: succState = state.generateSuccessor(agentIndex, action) (_, succValue) = multiminimax(succState, succDepth, succAgentIndex) if succValue > resultValue: (resultAction, resultValue) = (action, succValue) else: resultValue = float("inf") for action in legalActions: succState = state.generateSuccessor(agentIndex, action) (_, succValue) = multiminimax(succState, succDepth, succAgentIndex) if succValue < resultValue: (resultAction, resultValue) = (action, succValue) return (resultAction, resultValue) result = multiminimax(gameState, self.depth, 0) return result[0]class AlphaBetaAgent(MultiAgentSearchAgent): """ Your minimax agent with alpha-beta pruning (question 3) """ def getAction(self, gameState): """ Returns the minimax action using self.depth and self.evaluationFunction """ agentCount = gameState.getNumAgents() def multiminimax(state, depth, agentIndex, alpha, beta): legalActions = state.getLegalActions(agentIndex) if depth == 0 or len(legalActions) == 0: return (None, self.evaluationFunction(state)) succAgentIndex = (agentIndex + 1) % agentCount succDepth = depth if succAgentIndex == 0: succDepth -= 1 resultAction = None if agentIndex == 0: resultValue = float("-inf") for action in legalActions: succState = state.generateSuccessor(agentIndex, action) (_, succValue) = multiminimax(succState, succDepth, succAgentIndex, alpha, beta) if succValue > resultValue: (resultAction, resultValue) = (action, succValue) if resultValue > beta: break alpha = max(alpha, resultValue) else: resultValue = float("inf") for action in legalActions: succState = state.generateSuccessor(agentIndex, action) (_, succValue) = multiminimax(succState, succDepth, succAgentIndex, alpha, beta) if succValue < resultValue: (resultAction, resultValue) = (action, succValue) if resultValue < alpha: break beta = min(beta, resultValue) return (resultAction, resultValue) result = multiminimax(gameState, self.depth, 0, float("-inf"), float("inf")) return result[0]class ExpectimaxAgent(MultiAgentSearchAgent): """ Your expectimax agent (question 4) """ def getAction(self, gameState): """ Returns the expectimax action using self.depth and self.evaluationFunction All ghosts should be modeled as choosing uniformly at random from their legal moves. """ agentCount = gameState.getNumAgents() def multiminimax(state, depth, agentIndex): legalActions = state.getLegalActions(agentIndex) if depth == 0 or len(legalActions) == 0: return (None, self.evaluationFunction(state)) succAgentIndex = (agentIndex + 1) % agentCount succDepth = depth if succAgentIndex == 0: succDepth -= 1 resultAction = None if agentIndex == 0: resultValue = float("-inf") for action in legalActions: succState = state.generateSuccessor(agentIndex, action) (_, succValue) = multiminimax(succState, succDepth, succAgentIndex) if succValue > resultValue: (resultAction, resultValue) = (action, succValue) else: resultValue = 0 for action in legalActions: succState = state.generateSuccessor(agentIndex, action) (_, succValue) = multiminimax(succState, succDepth, succAgentIndex) resultValue += succValue resultValue /= float(len(legalActions)) return (resultAction, resultValue) result = multiminimax(gameState, self.depth, 0) return result[0]def betterEvaluationFunction(currentGameState): """ Your extreme ghost-hunting, pellet-nabbing, food-gobbling, unstoppable evaluation function (question 5). DESCRIPTION: Our heuristic works as follows, maximize score by running away from ghosts and getting as close as possible to the minimum food pellot at each state. To solve the pickle of being stuck between two food pellots (0 *Pacman* 0) we add an incrementing counter to the manhattanDistance between our agent's position and the distance to the food. We also add incentive for eating capsules if the capsule is closer than the ghost. Our heuristic averages ~1100 points. """ # Useful information you can extract from a GameState (pacman.py) currPos = currentGameState.getPacmanPosition() foodList = currentGameState.getFood().asList() ghostStates = currentGameState.getGhostStates() scaredTimes = [ghostState.scaredTimer for ghostState in ghostStates] score = currentGameState.getScore() if currentGameState.isWin(): return sys.maxint if currentGameState.isLose(): return -sys.maxint # Ghost distances minGhostDist = float("inf") ghostDists = [] min for ghost in ghostStates: ghostDists.append(util.manhattanDistance(ghost.getPosition(), currPos)) if len(ghostDists) > 0: minGhostDist = min(ghostDists) # Food score minFoodDist = float("inf") foodDists = [] i = 0 for food in foodList: foodDists.append(util.manhattanDistance(currPos, food) + i) i += 1 if len(foodDists) > 0: minFoodDist = min(foodDists) # Capsules capsules = currentGameState.getCapsules() capDists = [] minCapDist = 0 for cap in capsules: capDists.append(util.manhattanDistance(currPos, cap)) if len(capDists) > 0: minCapDist = min(capDists) scared = 0 for scare in scaredTimes: scared += scare if minGhostDist < 3 and minGhostDist > minCapDist and minCapDist != 0: return score + 1/(5*float(minCapDist)) - minFoodDist elif minGhostDist < 3: return score + 5*minGhostDist - minFoodDist else: return score - minFoodDist# Abbreviationbetter = betterEvaluationFunction