This repository has been archived by the owner on Jun 3, 2024. It is now read-only.
forked from oap-project/raydp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpytorch_nyctaxi.py
83 lines (76 loc) · 2.98 KB
/
pytorch_nyctaxi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import ray
import torch
import torch.nn as nn
import torch.nn.functional as F
import raydp
from raydp.torch import TorchEstimator
from raydp.utils import random_split
from data_process import nyc_taxi_preprocess, NYC_TRAIN_CSV
from typing import List, Dict
# Firstly, You need to init or connect to a ray cluster.
# Note that you should set include_java to True.
# For more config info in ray, please refer the ray doc:
# https://docs.ray.io/en/latest/package-ref.html
# ray.init(address="auto")
ray.init(address="local", num_cpus=4)
# After initialize ray cluster, you can use the raydp api to get a spark session
app_name = "NYC Taxi Fare Prediction with RayDP"
num_executors = 1
cores_per_executor = 1
memory_per_executor = "500M"
spark = raydp.init_spark(app_name, num_executors, cores_per_executor, memory_per_executor)
# Then you can code as you are using spark
# The dataset can be downloaded from:
# https://www.kaggle.com/c/new-york-city-taxi-fare-prediction/data
# Here we just use a subset of the training data
data = spark.read.format("csv").option("header", "true") \
.option("inferSchema", "true") \
.load(NYC_TRAIN_CSV)
# Set spark timezone for processing datetime
spark.conf.set("spark.sql.session.timeZone", "UTC")
# Transform the dataset
data = nyc_taxi_preprocess(data)
# Split data into train_dataset and test_dataset
train_df, test_df = random_split(data, [0.9, 0.1], 0)
features = [field.name for field in list(train_df.schema) if field.name != "fare_amount"]
# Define a neural network model
class NYC_Model(nn.Module):
def __init__(self, cols):
super().__init__()
self.fc1 = nn.Linear(cols, 256)
self.fc2 = nn.Linear(256, 128)
self.fc3 = nn.Linear(128, 64)
self.fc4 = nn.Linear(64, 16)
self.fc5 = nn.Linear(16, 1)
self.bn1 = nn.BatchNorm1d(256)
self.bn2 = nn.BatchNorm1d(128)
self.bn3 = nn.BatchNorm1d(64)
self.bn4 = nn.BatchNorm1d(16)
def forward(self, x):
x = F.relu(self.fc1(x))
x = self.bn1(x)
x = F.relu(self.fc2(x))
x = self.bn2(x)
x = F.relu(self.fc3(x))
x = self.bn3(x)
x = F.relu(self.fc4(x))
x = self.bn4(x)
x = self.fc5(x)
return x
nyc_model = NYC_Model(len(features))
criterion = nn.SmoothL1Loss()
optimizer = torch.optim.Adam(nyc_model.parameters(), lr=0.001)
# Create a distributed estimator based on the raydp api
estimator = TorchEstimator(num_workers=1, model=nyc_model, optimizer=optimizer, loss=criterion,
feature_columns=features, feature_types=torch.float,
label_column="fare_amount", label_type=torch.float,
batch_size=64, num_epochs=30,
metrics_name = ["MeanAbsoluteError", "MeanSquaredError"],
use_ccl=False)
# Train the model
estimator.fit_on_spark(train_df, test_df)
# Get the trained model
model = estimator.get_model()
# shutdown raydp and ray
raydp.stop_spark()
ray.shutdown()