-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSnakefile.preprocess
228 lines (185 loc) · 8.31 KB
/
Snakefile.preprocess
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
from itertools import product
from pathlib import Path
from tqdm import tqdm
import socket
import yaml
####################################################################################
################################# CLUSTER CONFIG ###################################
####################################################################################
with open("info.yaml", "r") as stream:
DATASET_INFO = yaml.safe_load(stream)
with open("../Snakemake_info.yaml", "r") as stream:
SNAKEMAKE_INFO = yaml.safe_load(stream)
DATASET = DATASET_INFO["DATASET"]
OUT_FOLDER = DATASET_INFO[f"OUT_FOLDER"]
SAMPLES = DATASET_INFO["SAMPLE"]
MODEL_R = DATASET_INFO["MODEL_R"] if DATASET_INFO["MODEL_R"] else list()
MODEL_PYTHON = DATASET_INFO["MODEL_PYTHON"] if DATASET_INFO["MODEL_PYTHON"] else list()
MODEL_FINE_TUNE = DATASET_INFO["MODEL_FINE_TUNE"] if DATASET_INFO["MODEL_FINE_TUNE"] else list()
DOWNSAMPLE_FACTOR = DATASET_INFO["DOWNSAMPLE_FACTOR"]
CROSS_VALIDATION_SPLIT = DATASET_INFO["CROSS_VALIDATION_SPLIT"]
IMAGE_FORMAT = DATASET_INFO["IMAGE_FORMAT"]
IMAGE_FEATURES = DATASET_INFO["IMAGE_FEATURES"]
CONDA_ENV = SNAKEMAKE_INFO["CONDA_ENV"]
LANGUAGE = SNAKEMAKE_INFO["LANGUAGE"]
PARTITION = SNAKEMAKE_INFO["PARTITION"]
GPU = SNAKEMAKE_INFO["GPU"]
MEM = SNAKEMAKE_INFO["MEM"]
TIME = SNAKEMAKE_INFO["TIME"]
CPU = SNAKEMAKE_INFO["CPU"]
MEM_RULES = SNAKEMAKE_INFO["MEM_RULES"]
TMP_MEM = SNAKEMAKE_INFO["TMP_MEM"]
TIME_RULES = SNAKEMAKE_INFO["TIME_RULES"]
####################################################################################
##################################### FOLDERS #####################################
####################################################################################
CROSS_VALIDATION_SPLIT_NAMES = []
CROSS_VALIDATION_SPLIT_DICT = {}
PARAMETER_FILE_NAMES_DICT = {}
# Create directories
folders_to_create = [
"summary", "benchmarks", "data/h5ad", "data/rds", "data/image", "data/image_features",
"data/meta", "logs"
]
for folder in folders_to_create:
Path(f"{OUT_FOLDER}/{folder}").mkdir(parents=True, exist_ok=True)
# Process splits
for train_on, test_on in tqdm(CROSS_VALIDATION_SPLIT):
train_on_str = "_".join(train_on)
test_on_str = "_".join(test_on)
split_name = f"{train_on_str}_test_{test_on_str}"
CROSS_VALIDATION_SPLIT_DICT[train_on_str] = test_on
CROSS_VALIDATION_SPLIT_DICT[test_on_str] = train_on
CROSS_VALIDATION_SPLIT_DICT[split_name] = [train_on, test_on]
for model in MODEL_PYTHON + MODEL_R:
Path(f"{OUT_FOLDER}/{split_name}/{model}_evaluate/clusters_default").mkdir(parents=True, exist_ok=True)
for model in MODEL_FINE_TUNE:
fine_tune_folder = f"{OUT_FOLDER}/{split_name}/{model}_fine_tune"
Path(fine_tune_folder).mkdir(parents=True, exist_ok=True)
for subfolder in ["clusters", "latent", "parameters", "loss"]:
Path(f"{fine_tune_folder}/{subfolder}").mkdir(parents=True, exist_ok=True)
Path(f"{OUT_FOLDER}/{split_name}/{model}_evaluate/clusters").mkdir(parents=True, exist_ok=True)
Path(f"{OUT_FOLDER}/{split_name}/{model}_evaluate/latent").mkdir(parents=True, exist_ok=True)
Path(f"{OUT_FOLDER}/{split_name}/{model}_evaluate/loss").mkdir(parents=True, exist_ok=True)
with open(f"../workflows/configs/config_{model}.yaml", "r") as stream:
INFO = yaml.safe_load(stream)
parameter_settings = [dict(zip(INFO, v)) for v in product(*INFO.values())]
PARAMETER_FILE_NAMES = []
for setting in parameter_settings:
name_setting = str(setting).replace("'", "").replace(" ", "").replace("{", "").replace("}", "").replace(":", "_").replace(",", "_")
param_path = f"{OUT_FOLDER}/{split_name}/{model}_fine_tune/parameters/{name_setting}.yaml"
if not os.path.isfile(param_path):
with open(param_path, "w") as outfile:
yaml.dump(setting, outfile, default_flow_style=False)
PARAMETER_FILE_NAMES.append(name_setting)
PARAMETER_FILE_NAMES_DICT[model] = PARAMETER_FILE_NAMES
CROSS_VALIDATION_SPLIT_NAMES.append(split_name)
####################################################################################
#################################### MAIN RULE #####################################
####################################################################################
rule all:
input:
expand(OUT_FOLDER + "/data/h5ad/{sample}.h5ad", sample=SAMPLES),
expand(OUT_FOLDER + "/data/rds/{sample}.rds", sample=SAMPLES),
expand(OUT_FOLDER + "/data/image/{sample}." + IMAGE_FORMAT, sample=SAMPLES),
expand(OUT_FOLDER + "/data/image_features/{sample}_{image_feature}.npy", sample=SAMPLES, image_feature=IMAGE_FEATURES),
expand(OUT_FOLDER + "/data/meta/{sample}.json", sample=SAMPLES)
####################################################################################
#################################### PREPROCESS ####################################
####################################################################################
rule preprocessH5AD:
input:
pyscript = f"../workflows/preprocess/preprocessH5AD_{DATASET}.py"
output:
OUT_FOLDER + "/data/h5ad/{sample}.h5ad"
params:
downsample_factor = DOWNSAMPLE_FACTOR,
out_folder = OUT_FOLDER
threads: 1
resources:
p="compute,gpu",
gpu="gpu:0",
mem_mb=MEM_RULES["preprocessH5AD"],
time=TIME_RULES["preprocessH5AD"],
log=OUT_FOLDER + "/logs/slurm-%j.out",
jobname="preprocessH5AD",
tmp=TMP_MEM["preprocessH5AD"]
conda: CONDA_ENV["python_env"]
benchmark: OUT_FOLDER + "/benchmarks/preprocessH5AD/{sample}.log"
shell:
"""
python {input.pyscript} {wildcards.sample} {params.downsample_factor} {params.out_folder}
"""
rule structureData:
input:
pyscript = f"../workflows/preprocess/structure_data_{DATASET}.py"
output:
OUT_FOLDER + "/data/image/{sample}." + IMAGE_FORMAT,
OUT_FOLDER + "/data/meta/{sample}.json",
params:
out_folder = OUT_FOLDER
threads: 1
resources:
p="compute,gpu",
gpu="gpu:0",
mem_mb=MEM_RULES["structureData"],
time=TIME_RULES["structureData"],
log=OUT_FOLDER + "/logs/slurm-%j.out",
jobname="structureData",
tmp=TMP_MEM["structureData"]
conda: CONDA_ENV["python_env"]
benchmark: OUT_FOLDER + "/benchmarks/structureData/{sample}.log"
shell:
"""
python {input.pyscript} {wildcards.sample} {params.out_folder}
"""
rule extract_image_features:
input:
OUT_FOLDER + "/data/h5ad/{sample}.h5ad",
OUT_FOLDER + "/data/image/{sample}." + IMAGE_FORMAT,
OUT_FOLDER + "/data/meta/{sample}.json",
pyscript = "../workflows/preprocess/extract_image_features_{image_feature}.py"
output:
OUT_FOLDER + "/data/image_features/{sample}_{image_feature}.npy"
params:
node = socket.gethostname(),
out_folder = OUT_FOLDER
threads: 1
resources:
p="gpu",
gpu="gpu:1",
mem_mb=MEM_RULES["extract_image_features"],
time=TIME_RULES["extract_image_features"],
log=OUT_FOLDER + "/logs/slurm-%j.out",
jobname="extract_image_features",
tmp=TMP_MEM["extract_image_features"]
conda: CONDA_ENV["python_env"]
benchmark: OUT_FOLDER + "/benchmarks/extract_image_features/{sample}_{image_feature}.log"
shell:
"""
echo {params.node}
python {input.pyscript} {wildcards.sample} {params.out_folder}
"""
rule createSeuratRDSfromH5AD:
input:
Rscript = "../workflows/preprocess/createSeuratRDSfromH5AD.R",
h5ad = OUT_FOLDER + "/data/h5ad/{sample}.h5ad"
output:
OUT_FOLDER + "/data/rds/{sample}.rds"
params:
out_folder = OUT_FOLDER
threads: 1
resources:
p="compute,gpu",
gpu="gpu:0",
mem_mb=MEM_RULES["createSeuratRDSfromH5AD"],
time=TIME_RULES["createSeuratRDSfromH5AD"],
log=OUT_FOLDER + "/logs/slurm-%j.out",
jobname="createSeuratRDSfromH5AD",
tmp=TMP_MEM["createSeuratRDSfromH5AD"]
conda: CONDA_ENV["python_env"]
benchmark: OUT_FOLDER + "/benchmarks/createSeuratRDSfromH5AD/{sample}.log"
shell:
"""
Rscript {input.Rscript} {wildcards.sample} {params.out_folder}
"""