-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclassify_plast.py
executable file
·210 lines (179 loc) · 7.77 KB
/
classify_plast.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
#!/usr/bin/env python
import os
import sys
import pandas as pd
import numpy as np
import tempfile
import itertools
from copy import copy
sys.path.append("WGSUniFrac")
from wgsunifrac import *
nodes_file = "augmented/fungiaug_nodes.dmp"
names_file = "augmented/fungiaug_names.dmp"
acc2taxid_file = "augmented/fungiaug_accession2taxid.dmp"
with open(acc2taxid_file, 'r') as f:
line_gen = (line.rstrip("\n").split() for line in f)
acc2taxid = dict((acc,int(taxid)) for acc,taxid in line_gen)
assert(len(acc2taxid))
kept_levels = ["no rank","superkingdom", "phylum", "class",
"order", "family", "genus", "species", "strain", "acc"]
with open(nodes_file, 'r') as f:
line_gen = (line.rstrip("\n").split("\t|\t")[:3] for line in f)
get_parent = dict((int(a[0]),(int(a[1]), a[2])) for a in line_gen)
assert(len(get_parent))
with open(names_file, 'r') as f:
line_gen = (line.rstrip().rstrip("|").rstrip().split("\t|\t")[:4] for line in f)
get_name = dict((int(a[0]),a[1]) for a in line_gen if a[3] == "scientific name")
assert(len(get_name))
def get_taxon_path(taxid):
taxid_list = []
rank_list = []
while taxid != 1:
parent,rank = get_parent[taxid]
taxid_list.append(taxid)
rank_list.append(rank)
taxid = parent
taxid_list.append(1)
rank_list.append("no rank")
return [taxid_list, rank_list]
kept_levels = {
"no rank":0,
"superkingdom":0,
"phylum":0,
"class":0,
"order":0,
"family":0,
"genus":0,
"species":0,
"strain":0,
"acc":0
}
def generate_profile(header, taxids):
assert(np.isclose(sum(taxids.values()), 1.0))
tax_paths = [get_taxon_path(taxid) for taxid,count in taxids.items()]
all_levels = kept_levels.keys()
for taxid_path,taxlevel_path in tax_paths:
cur_levels = set(taxlevel_path)
all_levels = all_levels & cur_levels
cur_kept_levels = dict(a for a in kept_levels.items() if a[0] in all_levels)
ranks_to_report = "|".join(cur_kept_levels.keys())
output = [
"# Taxonomic Profiling Output",
f'@SampleID: {header}',
f'@Version:1.0',
f'@Ranks:{ranks_to_report}',
'@TaxonomyID: Jan 08 2019',
'@@TAXID\tRANK\tTAXPATH\tTAXPATHSN\tPERCENTAGE',
]
base_output = len(output)
rank_count = dict()
for (taxid_path,taxlevel_path),(taxid,count) in zip(tax_paths,taxids.items()):
added = set()
assert(count <= 1.0)
assert(count > 0)
taxnames = [get_name[taxid] for taxid in taxid_path]
for i,(cur_taxid,cur_rank) in enumerate(zip(taxid_path,taxlevel_path)):
if cur_rank not in cur_kept_levels or (cur_rank == "no rank" and i + 1 != len(taxid_path)):
continue
assert(cur_rank not in added)
added.add(cur_rank)
if cur_rank not in rank_count:
rank_count[cur_rank] = dict()
if cur_taxid not in rank_count[cur_rank]:
rank_count[cur_rank][cur_taxid] = [
count,
"|".join(str(t) for t in taxid_path[i:][::-1]),
"|".join(n for n in taxnames[i:][::-1]),
]
else:
rank_count[cur_rank][cur_taxid][0] += count
for rank in kept_levels:
if rank not in rank_count:
continue
cursum = sum(count for count,taxidpath,namepath in rank_count[rank].values())
assert(np.isclose(cursum, 1.0))
for taxid,(count,taxidpath,namepath) in rank_count[rank].items():
output.append(f'{taxid}\t{rank}\t{taxidpath}\t{namepath}\t{count/cursum*100.0}')
assert(len(output) > base_output)
return output,cur_kept_levels
def encode_profile(output, alpha):
f = tempfile.NamedTemporaryFile(mode='w+')
f.write("\n".join(output))
f.seek(0)
name,metadata,profile = open_profile_from_tsv(f.name, False)[0]
return Profile(sample_metadata=metadata,profile=profile,branch_length_fun=lambda x: x ** alpha)
def profile_dist(f, g):
(Tint, lint, nodes_in_order, nodes_to_index, P, Q) = f.make_unifrac_input_and_normalize(g)
(weighted, _) = EMDUnifrac_weighted(Tint, lint, nodes_in_order, P, Q)
return weighted
k = 31
alpha = -1
with open(sys.argv[1], 'r') as f,open(sys.argv[2], 'r') as g:
g_iter = enumerate(itertools.zip_longest(*[g]*2))
df = pd.read_table(f, header=None,
names=["read_num", "score", "begin", "end", "labels"])
df_grouped = df.groupby("read_num")
for i,(header,cur_read) in g_iter:
header = header[1:-1]
readid = header.split("-")[0]
true_taxid = acc2taxid[readid]
true_profile,true_cur_kept_levels = generate_profile(header, { true_taxid: 1.0 })
true_profile_enc = encode_profile(true_profile, alpha)
cur_read = cur_read[:-1]
readlen = len(cur_read)
coverage_label_to_marker = []
label_to_marker = dict()
df_group = df_grouped.get_group(i)
if len(df_group) > 0:
marker = np.zeros(readlen).astype(bool)
for row_num,(score,begin,end,labels) in df_group.sort_values(by="score",ascending=False)[["score","begin","end","labels"]].iterrows():
if marker[begin:end].sum() > 0:
continue
label_marker = np.zeros(readlen).astype(bool)
label_marker[begin:end] = True
marker |= label_marker
for label in (".".join(label.split("/")[-1].split(".")[:2]) for label in labels.split(";")):
if label not in label_to_marker:
label_to_marker[label] = label_marker
else:
label_to_marker[label] |= label_marker
coverage_label_to_marker.append((copy(marker), label_marker, score/readlen, copy(label_to_marker)))
else:
label_to_marker["unclassified"] = np.ones(readlen).astype(bool)
coverage_label_to_marker.append((marker, marker, 0, label_to_marker))
results = []
for marker,mask,rel_score,label_to_marker in coverage_label_to_marker:
counts = np.array([lmarker.sum() for label,lmarker in label_to_marker.items()])
assert(np.all(counts <= readlen))
assert(np.all(counts > 0))
assert(counts.sum() > 0)
counts = counts.astype(float) / counts.sum()
assert(np.isclose(counts.sum(), 1.0))
taxids = [acc2taxid[label] if label != "unclassified" else 1 for label in label_to_marker]
assert(len(taxids) == len(set(taxids)))
profile,cur_kept_levels = generate_profile(header, dict(zip(taxids, counts)))
last = "root"
last_named = "root"
last_taxid = 1
profile_subset = [l for l in profile if l[0] != "@" and l[0] != "#" and l.split("\t")[1] in true_cur_kept_levels]
true_profile_subset = [l for l in true_profile if l[0] != "@" and l[0] != "#"]
for l1,l2 in zip(profile_subset,true_profile_subset):
if l1 != l2:
break
else:
l1 = l1.split("\t")
last = l1[1]
if l1[1] != "no rank":
last_named = l1[1]
last_taxid = int(l1[0])
profile_enc = encode_profile(profile, alpha)
result = [float(marker.sum())/len(marker),
float(mask.sum())/len(mask),
last_taxid,
profile_dist(profile_enc, true_profile_enc),
last_named,
last,
rel_score]
results.append(",".join(str(a) for a in result))
results = ";".join(results)
print(f'{i}\t{readid}\t{true_taxid}\t{header}\t{last_taxid}\t{results}')