-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclassify_ga.py
executable file
·46 lines (40 loc) · 1.65 KB
/
classify_ga.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
#!/usr/bin/env python
import os
import sys
import pandas as pd
import numpy as np
import itertools
from copy import copy
with open(sys.argv[1], 'r') as f,open(sys.argv[2], 'r') as g:
g_iter = itertools.zip_longest(*[g]*2)
ga_data = [line.rstrip().split("\t") for line in f.readlines()]
f_grouped = itertools.groupby(ga_data, lambda x:x[0])
header = 0
for read_id,(cur_header, cur_read) in enumerate(g_iter):
cur_header = cur_header[1:-1]
readid = cur_header.split("-")[0]
if header == 0:
try:
header, score_data = next(f_grouped)
except StopIteration:
pass
results = []
if header == cur_header:
rlen = len(cur_read) - 1
score_data = list(score_data)
query_reg = [(int(a[2]),int(a[3])) for a in score_data]
nscores = [-float(a[13].split(":")[-1])/rlen for a in score_data]
marker = np.zeros(rlen).astype(bool)
n_reg_len = [a-b for a,b in query_reg]
vals = sorted(list(zip(nscores,n_reg_len,query_reg)))
for nscore,nrl,(qs,qe) in vals:
if marker[qs:qe].sum() == 0:
marker[qs:qe] = True
results.append((float(marker.sum())/len(marker),
float(qe-qs)/len(marker),
-nscore))
header = 0
else:
results.append((0,0,0))
results = ";".join(f'{marker_cov},{mask_cov},0,1,root,root,{rel_score}' for marker_cov,mask_cov,rel_score in results)
print(f'{read_id}\t{readid}\troot\t{cur_header}\troot\t{results}')