-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathpredictor_test.go
176 lines (151 loc) · 4.83 KB
/
predictor_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
// +build linux
// +build !ppc64le
// +build !nogpu
// +build cgo
package tensorrt
import (
"context"
"fmt"
"image"
"io/ioutil"
"math"
"os"
"path/filepath"
"sort"
"strings"
"testing"
"github.com/GeertJohan/go-sourcepath"
"github.com/anthonynsimon/bild/imgio"
"github.com/anthonynsimon/bild/transform"
"github.com/k0kubun/pp"
"github.com/rai-project/config"
"github.com/rai-project/dlframework"
"github.com/rai-project/dlframework/framework/feature"
"github.com/rai-project/dlframework/framework/options"
nvidiasmi "github.com/rai-project/nvidia-smi"
_ "github.com/rai-project/tracer/all"
"github.com/stretchr/testify/assert"
gotensor "gorgonia.org/tensor"
)
var (
batchSize = 1
shape = []int{1, 3, 224, 224}
mean = []float32{123.68, 116.779, 103.939}
scale = []float32{1.0, 1.0, 1.0}
thisDir = sourcepath.MustAbsoluteDir()
imgPath = filepath.Join(thisDir, "examples", "_fixtures", "platypus.jpg")
labelFilePath = filepath.Join(thisDir, "examples", "_fixtures", "resnet50", "synset.txt")
caffeGraphFilePath = filepath.Join(thisDir, "examples", "_fixtures", "resnet50", "resnet50.prototxt")
caffeWeightsFilePath = filepath.Join(thisDir, "examples", "_fixtures", "resnet50", "resnet50.caffemodel")
onnxModelPath = filepath.Join(thisDir, "examples", "_fixtures", "ResNet50.onnx")
uffModelPath = filepath.Join(thisDir, "examples", "_fixtures", "resnet50-infer-5.uff")
)
// convert go RGB Image to 1D normalized RGB array
func cvtRGBImageToNCHW1DArray(src image.Image, mean []float32, scale []float32) ([]float32, error) {
if src == nil {
return nil, fmt.Errorf("src image nil")
}
in := src.Bounds()
height := in.Max.Y - in.Min.Y // image height
width := in.Max.X - in.Min.X // image width
stride := width * height // image size per channel
out := make([]float32, 3*height*width)
for y := 0; y < height; y++ {
for x := 0; x < width; x++ {
r, g, b, _ := src.At(x+in.Min.X, y+in.Min.Y).RGBA()
out[0*stride+y*width+x] = (float32(r>>8) - mean[0]) / scale[0]
out[1*stride+y*width+x] = (float32(g>>8) - mean[1]) / scale[1]
out[2*stride+y*width+x] = (float32(b>>8) - mean[2]) / scale[2]
}
}
return out, nil
}
func TestTensorRTCaffe(t *testing.T) {
img, err := imgio.Open(imgPath)
if err != nil {
t.Errorf("Test input image is not found: %v", err)
}
height := shape[2]
width := shape[3]
var input []float32
for ii := 0; ii < batchSize; ii++ {
resized := transform.Resize(img, height, width, transform.Linear)
res, err := cvtRGBImageToNCHW1DArray(resized, mean, scale)
if err != nil {
t.Errorf("Test input image transformation is not successful: %v", err)
}
input = append(input, res...)
}
opts := options.New()
if !nvidiasmi.HasGPU {
t.Errorf("GPU is not detected: %v", err)
}
device := options.CUDA_DEVICE
ctx := context.Background()
in := options.Node{
Key: "data",
Shape: shape,
Dtype: gotensor.Float32,
}
out := options.Node{
Key: "prob",
Dtype: gotensor.Float32,
}
predictor, err := New(
ctx,
options.WithOptions(opts),
options.Device(device, 0),
options.Graph([]byte(caffeGraphFilePath)),
options.Weights([]byte(caffeWeightsFilePath)),
options.BatchSize(batchSize),
options.InputNodes([]options.Node{in}),
options.OutputNodes([]options.Node{out}),
)
if err != nil {
t.Errorf("TensorRT predictor initiation failed %v", err)
}
defer predictor.Close()
err = predictor.Predict(ctx, input)
if err != nil {
t.Errorf("tensorRT inference failed %v", err)
}
outputs, err := predictor.ReadPredictionOutputs(ctx)
if err != nil {
panic(err)
}
output := outputs[0]
labelsFileContent, err := ioutil.ReadFile(labelFilePath)
assert.NoError(t, err)
labels := strings.Split(string(labelsFileContent), "\n")
features := make([]dlframework.Features, batchSize)
featuresLen := len(output) / batchSize
for ii := 0; ii < batchSize; ii++ {
rprobs := make([]*dlframework.Feature, featuresLen)
for jj := 0; jj < featuresLen; jj++ {
rprobs[jj] = feature.New(
feature.ClassificationIndex(int32(jj)),
feature.ClassificationLabel(labels[jj]),
feature.Probability(output[ii*featuresLen+jj]),
)
}
sort.Sort(dlframework.Features(rprobs))
features[ii] = rprobs
}
top1 := features[0][0]
assert.Equal(t, int32(103), top1.GetClassification().GetIndex())
pp.Println(top1.GetClassification().GetLabel(), top1.GetProbability())
if top1.GetClassification().GetLabel() != "n01873310 platypus, duckbill, duckbilled platypus, duck-billed platypus, Ornithorhynchus anatinus" {
t.Errorf("tensorRT class label wrong")
}
if math.Abs(float64(top1.GetProbability()-0.99)) > .01 {
t.Errorf("tensorRT class probablity wrong")
}
}
func TestMain(m *testing.M) {
config.Init(
config.AppName("carml"),
config.VerboseMode(true),
config.DebugMode(true),
)
os.Exit(m.Run())
}