-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathContrastiveLoss.py
207 lines (173 loc) · 8.16 KB
/
ContrastiveLoss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
from __future__ import print_function
import torch
import torch.nn as nn
class ContrastiveLoss(nn.Module):
"""Supervised Contrastive Learning: https://arxiv.org/pdf/2004.11362.pdf.
It also supports the unsupervised contrastive loss in SimCLR"""
def __init__(self, temperature=0.07, contrast_mode='all',
base_temperature=0.07):
super(ContrastiveLoss, self).__init__()
self.temperature = temperature
self.contrast_mode = contrast_mode
self.base_temperature = base_temperature
def forward(self, features, labels=None, mask=None):
"""Compute loss for model. If both `labels` and `mask` are None,
it degenerates to SimCLR unsupervised loss:
https://arxiv.org/pdf/2002.05709.pdf
Args:
features: hidden vector of shape [bsz, n_views, ...].
labels: ground truth of shape [bsz].
mask: contrastive mask of shape [bsz, bsz], mask_{i,j}=1 if sample j
has the same class as sample i. Can be asymmetric.
Returns:
A loss scalar.
"""
device = (torch.device('cuda')
if features.is_cuda
else torch.device('cpu'))
if len(features.shape) < 3:
raise ValueError('`features` needs to be [bsz, n_views, ...],'
'at least 3 dimensions are required')
if len(features.shape) > 3:
features = features.view(features.shape[0], features.shape[1], -1)
batch_size = features.shape[0]
if labels is not None and mask is not None:
raise ValueError('Cannot define both `labels` and `mask`')
elif labels is None and mask is None:
mask = torch.eye(batch_size, dtype=torch.float32).to(device)
elif labels is not None:
labels = labels.contiguous().view(-1, 1)
if labels.shape[0] != batch_size:
raise ValueError('Num of labels does not match num of features')
mask = torch.eq(labels, labels.T).float().to(device)
else:
mask = mask.float().to(device)
contrast_count = features.shape[1]
contrast_feature = torch.cat(torch.unbind(features, dim=1), dim=0)
if self.contrast_mode == 'one':
anchor_feature = features[:, 0]
anchor_count = 1
elif self.contrast_mode == 'all':
anchor_feature = contrast_feature
anchor_count = contrast_count
else:
raise ValueError('Unknown mode: {}'.format(self.contrast_mode))
# compute logits
anchor_dot_contrast = torch.div(
torch.matmul(anchor_feature, contrast_feature.T),
self.temperature)
# for numerical stability
logits_max, _ = torch.max(anchor_dot_contrast, dim=1, keepdim=True)
logits = anchor_dot_contrast - logits_max.detach()
# tile mask
mask = mask.repeat(anchor_count, contrast_count)
# mask-out self-contrast cases
logits_mask = torch.scatter(
torch.ones_like(mask),
1,
torch.arange(batch_size * anchor_count).view(-1, 1).to(device),
0
)
mask = mask * logits_mask
# compute log_prob
exp_logits = torch.exp(logits) * logits_mask
log_prob = logits - torch.log(exp_logits.sum(1, keepdim=True))
# compute mean of log-likelihood over positive
mean_log_prob_pos = (mask * log_prob).sum(1) / mask.sum(1)
# loss
loss = - (self.temperature / self.base_temperature) * mean_log_prob_pos
loss = loss.view(anchor_count, batch_size).mean()
return loss
import torch
import numpy as np
class NTXentLoss(torch.nn.Module):
def __init__(self, device, batch_size, temperature, use_cosine_similarity, beta, add_one_in_neg, exact_cov, exact_cov_unaug_sim):
super(NTXentLoss, self).__init__()
self.batch_size = batch_size
self.beta = beta
self.temperature = temperature
self.add_one_in_neg = add_one_in_neg
self.exact_cov = exact_cov
self.exact_cov_unaug_sim = exact_cov_unaug_sim
self.device = device
self.softmax = torch.nn.Softmax(dim=-1)
self.mask_samples_from_same_repr = self._get_correlated_mask().type(torch.bool)
self.mask_samples_small = self._get_correlated_mask_small().type(torch.bool)
self.similarity_function = self._get_similarity_function(use_cosine_similarity)
self.criterion = torch.nn.CrossEntropyLoss(reduction="sum")
def need_unaug_data(self):
return self.exact_cov_unaug_sim
def _get_similarity_function(self, use_cosine_similarity):
if use_cosine_similarity:
self._cosine_similarity = torch.nn.CosineSimilarity(dim=-1)
return self._cosine_simililarity
else:
return self._dot_simililarity
def _get_correlated_mask(self):
diag = np.eye(2 * self.batch_size)
l1 = np.eye((2 * self.batch_size), 2 * self.batch_size, k=-self.batch_size)
l2 = np.eye((2 * self.batch_size), 2 * self.batch_size, k=self.batch_size)
mask = torch.from_numpy((diag + l1 + l2))
mask = (1 - mask).type(torch.bool)
return mask.to(self.device)
def _get_correlated_mask_small(self):
diag = np.eye(self.batch_size)
mask = torch.from_numpy(diag)
mask = (1 - mask).type(torch.bool)
return mask.to(self.device)
@staticmethod
def _dot_simililarity(x, y):
v = torch.tensordot(x.unsqueeze(1), y.T.unsqueeze(0), dims=2)
# x shape: (N, 1, C)
# y shape: (1, C, 2N)
# v shape: (N, 2N)
return v
def _cosine_simililarity(self, x, y):
# x shape: (2N, 1, C)
# y shape: (1, 2N, C)
# v shape: (2N, 2N)
v = self._cosine_similarity(x.unsqueeze(1), y.unsqueeze(0))
return v
def forward(self, zis, zjs, zs):
representations = torch.cat([zjs, zis], dim=0)
similarity_matrix = self.similarity_function(representations, representations)
# filter out the scores from the positive samples
l_pos = torch.diag(similarity_matrix, self.batch_size)
r_pos = torch.diag(similarity_matrix, -self.batch_size)
positives = torch.cat([l_pos, r_pos]).view(2 * self.batch_size, 1)
negatives = similarity_matrix[self.mask_samples_from_same_repr].view(2 * self.batch_size, -1)
if self.exact_cov:
# 1 - sim = dist
r_neg = 1 - negatives
r_pos = 1 - positives
num_negative = negatives.size(1)
# Similarity matrix for unaugmented data.
if self.exact_cov_unaug_sim and zs is not None:
similarity_matrix2 = self.similarity_function(zs, zs)
negatives_unaug = similarity_matrix2[self.mask_samples_small].view(self.batch_size, -1)
r_neg_unaug = 1 - negatives_unaug
w = (-r_neg_unaug.detach() / self.temperature).exp()
# Duplicated four times.
w = torch.cat([w, w], dim=0)
w = torch.cat([w, w], dim=1)
else:
w = (-r_neg.detach() / self.temperature).exp()
w = w / (1 + w) / self.temperature / num_negative
# Then we construct the loss function.
w_pos = w.sum(dim=1, keepdim=True)
loss = (w_pos * r_pos - (w * r_neg).sum(dim=1)).mean()
loss_intra = self.beta * (w_pos * r_pos).mean()
else:
if self.add_one_in_neg:
all_ones = torch.ones(2 * self.batch_size, 1).to(self.device)
logits = torch.cat((positives, negatives, all_ones), dim=1)
else:
logits = torch.cat((positives, negatives), dim=1)
logits /= self.temperature
labels = torch.zeros(2 * self.batch_size).to(self.device).long()
loss = self.criterion(logits, labels)
# Make positive strong than negative to trigger an additional term.
loss_intra = -positives.sum() * self.beta / self.temperature
loss /= (1.0 + self.beta) * 2 * self.batch_size
loss_intra /= (1.0 + self.beta) * 2 * self.batch_size
return loss, loss_intra