forked from open-mmlab/OpenPCDet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbevfusion.yaml
208 lines (168 loc) · 5.23 KB
/
bevfusion.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
CLASS_NAMES: ['car','truck', 'construction_vehicle', 'bus', 'trailer',
'barrier', 'motorcycle', 'bicycle', 'pedestrian', 'traffic_cone']
DATA_CONFIG:
_BASE_CONFIG_: cfgs/dataset_configs/nuscenes_dataset.yaml
POINT_CLOUD_RANGE: [-54.0, -54.0, -5.0, 54.0, 54.0, 3.0]
CAMERA_CONFIG:
USE_CAMERA: True
IMAGE:
FINAL_DIM: [256,704]
RESIZE_LIM_TRAIN: [0.38, 0.55]
RESIZE_LIM_TEST: [0.48, 0.48]
DATA_AUGMENTOR:
DISABLE_AUG_LIST: ['placeholder']
AUG_CONFIG_LIST:
- NAME: random_world_flip
ALONG_AXIS_LIST: ['x', 'y']
- NAME: random_world_rotation
WORLD_ROT_ANGLE: [-0.78539816, 0.78539816]
- NAME: random_world_scaling
WORLD_SCALE_RANGE: [0.9, 1.1]
- NAME: random_world_translation
NOISE_TRANSLATE_STD: [0.5, 0.5, 0.5]
- NAME: imgaug
ROT_LIM: [-5.4, 5.4]
RAND_FLIP: True
DATA_PROCESSOR:
- NAME: mask_points_and_boxes_outside_range
REMOVE_OUTSIDE_BOXES: True
- NAME: shuffle_points
SHUFFLE_ENABLED: {
'train': True,
'test': True
}
- NAME: transform_points_to_voxels
VOXEL_SIZE: [0.075, 0.075, 0.2]
MAX_POINTS_PER_VOXEL: 10
MAX_NUMBER_OF_VOXELS: {
'train': 120000,
'test': 160000
}
- NAME: image_calibrate
- NAME: image_normalize
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
MODEL:
NAME: BevFusion
VFE:
NAME: MeanVFE
BACKBONE_3D:
NAME: VoxelResBackBone8x
USE_BIAS: False
MAP_TO_BEV:
NAME: HeightCompression
NUM_BEV_FEATURES: 256
IMAGE_BACKBONE:
NAME: SwinTransformer
EMBED_DIMS: 96
DEPTHS: [2, 2, 6, 2]
NUM_HEADS: [3, 6, 12, 24]
WINDOW_SIZE: 7
MLP_RATIO: 4
DROP_RATE: 0.
ATTN_DROP_RATE: 0.
DROP_PATH_RATE: 0.2
PATCH_NORM: True
OUT_INDICES: [1, 2, 3]
WITH_CP: False
CONVERT_WEIGHTS: True
INIT_CFG:
type: Pretrained
checkpoint: swint-nuimages-pretrained.pth
NECK:
NAME: GeneralizedLSSFPN
IN_CHANNELS: [192, 384, 768]
OUT_CHANNELS: 256
START_LEVEL: 0
END_LEVEL: -1
NUM_OUTS: 3
VTRANSFORM:
NAME: DepthLSSTransform
IMAGE_SIZE: [256, 704]
IN_CHANNEL: 256
OUT_CHANNEL: 80
FEATURE_SIZE: [32, 88]
XBOUND: [-54.0, 54.0, 0.3]
YBOUND: [-54.0, 54.0, 0.3]
ZBOUND: [-10.0, 10.0, 20.0]
DBOUND: [1.0, 60.0, 0.5]
DOWNSAMPLE: 2
FUSER:
NAME: ConvFuser
IN_CHANNEL: 336
OUT_CHANNEL: 256
BACKBONE_2D:
NAME: BaseBEVBackbone
LAYER_NUMS: [5, 5]
LAYER_STRIDES: [1, 2]
NUM_FILTERS: [128, 256]
UPSAMPLE_STRIDES: [1, 2]
NUM_UPSAMPLE_FILTERS: [256, 256]
USE_CONV_FOR_NO_STRIDE: True
DENSE_HEAD:
CLASS_AGNOSTIC: False
NAME: TransFusionHead
USE_BIAS_BEFORE_NORM: False
NUM_PROPOSALS: 200
HIDDEN_CHANNEL: 128
NUM_CLASSES: 10
NUM_HEADS: 8
NMS_KERNEL_SIZE: 3
FFN_CHANNEL: 256
DROPOUT: 0.1
BN_MOMENTUM: 0.1
ACTIVATION: relu
NUM_HM_CONV: 2
SEPARATE_HEAD_CFG:
HEAD_ORDER: ['center', 'height', 'dim', 'rot', 'vel']
HEAD_DICT: {
'center': {'out_channels': 2, 'num_conv': 2},
'height': {'out_channels': 1, 'num_conv': 2},
'dim': {'out_channels': 3, 'num_conv': 2},
'rot': {'out_channels': 2, 'num_conv': 2},
'vel': {'out_channels': 2, 'num_conv': 2},
}
TARGET_ASSIGNER_CONFIG:
FEATURE_MAP_STRIDE: 8
DATASET: nuScenes
GAUSSIAN_OVERLAP: 0.1
MIN_RADIUS: 2
HUNGARIAN_ASSIGNER:
cls_cost: {'gamma': 2.0, 'alpha': 0.25, 'weight': 0.15}
reg_cost: {'weight': 0.25}
iou_cost: {'weight': 0.25}
LOSS_CONFIG:
LOSS_WEIGHTS: {
'cls_weight': 1.0,
'bbox_weight': 0.25,
'hm_weight': 1.0,
'code_weights': [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.2, 0.2]
}
LOSS_CLS:
use_sigmoid: True
gamma: 2.0
alpha: 0.25
POST_PROCESSING:
SCORE_THRESH: 0.0
POST_CENTER_RANGE: [-61.2, -61.2, -10.0, 61.2, 61.2, 10.0]
POST_PROCESSING:
RECALL_THRESH_LIST: [0.3, 0.5, 0.7]
SCORE_THRESH: 0.1
OUTPUT_RAW_SCORE: False
EVAL_METRIC: kitti
OPTIMIZATION:
BATCH_SIZE_PER_GPU: 3
NUM_EPOCHS: 6
OPTIMIZER: adam_cosineanneal
LR: 0.0001
WEIGHT_DECAY: 0.01
MOMENTUM: 0.9
BETAS: [0.9, 0.999]
MOMS: [0.9, 0.8052631]
PCT_START: 0.4
WARMUP_ITER: 500
DECAY_STEP_LIST: [35, 45]
LR_WARMUP: False
WARMUP_EPOCH: 1
GRAD_NORM_CLIP: 35
LOSS_SCALE_FP16: 32