-
Notifications
You must be signed in to change notification settings - Fork 85
/
Copy pathsmall.py
111 lines (98 loc) · 4.27 KB
/
small.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
# -*- coding: utf-8 -*-
import torch, numpy as np
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.autograd import Variable
from keras.preprocessing import sequence
from utils import load_data
USE_CUDA = torch.cuda.is_available()
if USE_CUDA: torch.cuda.set_device(0)
LTensor = torch.cuda.LongTensor if USE_CUDA else torch.LongTensor
class RNN(nn.Module):
def __init__(self, x_dim, e_dim, h_dim, o_dim):
super(RNN, self).__init__()
self.h_dim = h_dim
self.dropout = nn.Dropout(0.2)
self.emb = nn.Embedding(x_dim, e_dim, padding_idx=0)
self.lstm = nn.LSTM(e_dim, h_dim, bidirectional=True, batch_first=True)
self.fc = nn.Linear(h_dim * 2, o_dim)
self.softmax = nn.Softmax(dim=1)
self.log_softmax = nn.LogSoftmax(dim=1)
def forward(self, x, lens):
embed = self.dropout(self.emb(x))
out, _ = self.lstm(embed)
hidden = self.fc(out[:, -1, :])
return self.softmax(hidden), self.log_softmax(hidden)
class CNN(nn.Module):
def __init__(self, x_dim, e_dim, h_dim, o_dim):
super(CNN, self).__init__()
self.emb = nn.Embedding(x_dim, e_dim, padding_idx=0)
self.dropout = nn.Dropout(0.2)
self.conv1 = nn.Conv2d(1, h_dim, (3, e_dim))
self.conv2 = nn.Conv2d(1, h_dim, (4, e_dim))
self.conv3 = nn.Conv2d(1, h_dim, (5, e_dim))
self.fc = nn.Linear(h_dim * 3, o_dim)
self.softmax = nn.Softmax(dim=1)
self.log_softmax = nn.LogSoftmax(dim=1)
def forward(self, x, lens):
embed = self.dropout(self.emb(x)).unsqueeze(1)
c1 = torch.relu(self.conv1(embed).squeeze(3))
p1 = torch.max_pool1d(c1, c1.size()[2]).squeeze(2)
c2 = torch.relu(self.conv2(embed).squeeze(3))
p2 = torch.max_pool1d(c2, c2.size()[2]).squeeze(2)
c3 = torch.relu(self.conv3(embed).squeeze(3))
p3 = torch.max_pool1d(c3, c3.size()[2]).squeeze(2)
pool = self.dropout(torch.cat((p1, p2, p3), 1))
hidden = self.fc(pool)
return self.softmax(hidden), self.log_softmax(hidden)
class Model(object):
def __init__(self, v_size):
self.model = None
self.b_size = 64
self.lr = 0.001
self.model = RNN(v_size, 256, 256, 2)
# self.model = CNN(v_size,256,128,2)
def train(self, x_tr, y_tr, l_tr, x_te, y_te, l_te, epochs=15):
assert self.model is not None
if USE_CUDA: self.model = self.model.cuda()
loss_func = nn.NLLLoss()
opt = optim.Adam(self.model.parameters(), lr=self.lr)
for epoch in range(epochs):
losses = []
accu = []
self.model.train()
for i in range(0, len(x_tr), self.b_size):
self.model.zero_grad()
bx = Variable(LTensor(x_tr[i:i + self.b_size]))
by = Variable(LTensor(y_tr[i:i + self.b_size]))
bl = Variable(LTensor(l_tr[i:i + self.b_size]))
_, py = self.model(bx, bl)
loss = loss_func(py, by)
loss.backward()
opt.step()
losses.append(loss.item())
self.model.eval()
with torch.no_grad():
for i in range(0, len(x_te), self.b_size):
bx = Variable(LTensor(x_te[i:i + self.b_size]))
by = Variable(LTensor(y_te[i:i + self.b_size]))
bl = Variable(LTensor(l_te[i:i + self.b_size]))
_, py = torch.max(self.model(Variable(LTensor(bx)), bl)[1], 1)
accu.append((py == by).float().mean().item())
print(np.mean(losses), np.mean(accu))
if __name__ == '__main__':
x_len = 50
# ----- ----- ----- ----- -----
# from keras.datasets import imdb
# v_size = 10000
# (x_tr,y_tr),(x_te,y_te) = imdb.load_data(num_words=v_size)
# ----- ----- ----- ----- -----
name = 'hotel' # clothing, fruit, hotel, pda, shampoo
(x_tr, y_tr, _), _, (x_te, y_te, _), v_size, _ = load_data(name)
l_tr = list(map(lambda x: min(len(x), x_len), x_tr))
l_te = list(map(lambda x: min(len(x), x_len), x_te))
x_tr = sequence.pad_sequences(x_tr, maxlen=x_len)
x_te = sequence.pad_sequences(x_te, maxlen=x_len)
clf = Model(v_size)
clf.train(x_tr, y_tr, l_tr, x_te, y_te, l_te)