-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathalgos.py
executable file
·218 lines (169 loc) · 6.98 KB
/
algos.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
# Copyright (C) 2017-2018 Massimiliano Volpe and Marco Miralto
# This file is part of ClusterScan.
# ClusterScan is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# ClusterScan is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License
# along with ClusterScan. If not, see <http://www.gnu.org/licenses/>.
import string
import pandas as pd
import pybedtools
def window_maker(list_name, filled_list, window_size, slide_size):
"""Make a bed file of sliding windows."""
for scaffold, start, end in filled_list:
width = window_size
step = slide_size
if width <= end:
list_name.append((scaffold, start, width))
else:
list_name.append((scaffold, start, end))
while width <= end:
start += step
width += step
if width >= end:
list_name.append((scaffold, start, end))
else:
list_name.append((scaffold, start, width))
return list_name
def cluster_composer(pre_cluster_object, pre_cluster_intersection):
final_list = []
"""Find real feature's positions."""
tmp = []
for item in pre_cluster_object:
scaffold = str(item[0])
for line in pre_cluster_intersection:
line = str(line)
if line.split()[0] == scaffold and (int(item[1]) <= int(line.split()[1]) <= int(item[2]) and int(item[1]) <= int(line.split()[2]) <= int(item[2])):
tmp.append(int(line.split()[1]))
tmp.append(int(line.split()[2]))
else:
continue
final_list.append((scaffold, min(tmp), max(tmp)))
tmp = []
return final_list
'''
def seed_extender(new_list, indexes, intersection, limit):
"""Extends culster's seeds."""
for index in indexes:
cluster_pos = []
scaffold = intersection[index][0]
right_step = index
left_step = index
while int(intersection[left_step][3]) >= limit and intersection[left_step][0] == scaffold:
if int(intersection[left_step][1]) not in cluster_pos:
cluster_pos.append(int(intersection[left_step][1]))
if (left_step - 1) >= 0:
left_step -= 1
else:
break
while int(intersection[right_step][3]) >= limit and intersection[right_step][0] == scaffold:
if int(intersection[right_step][2]) not in cluster_pos:
cluster_pos.append(int(intersection[right_step][2]))
if (right_step + 1) <= max(indexes):
right_step += 1
else:
break
cluster = (str(scaffold), min(cluster_pos), max(cluster_pos))
if cluster not in new_list:
new_list.append(cluster)
return new_list
'''
def do_clusterdist(catList, pdTbl, tbl, sargs):
for category in catList:
df = pdTbl[pdTbl.category == category]
BEDtools_object = pybedtools.BedTool().from_dataframe(df).sort()
try:
merge = BEDtools_object.merge(d=int(sargs['--dist']), c=4, o="count_distinct")
except Exception as e:
continue
df = pd.read_table(merge.fn, header=None)
df[4] = category
tbl = tbl.append(df)
return tbl
def do_clustermean(catList, pdTbl, tbl, sargs):
loc = list(pdTbl.chr.unique())
chr_len = []
for chr in loc:
df = pdTbl[pdTbl.chr == chr]
chr_len.append((chr, 0, max(df.end)))
windows = []
window_maker(windows, chr_len, int(sargs['--window']), int(sargs['--slide']))
win_bed = pybedtools.BedTool(windows)
# for each category compute clusters
for category in catList:
# print category
df = pdTbl[pdTbl.category == category]
BEDtools_object = pybedtools.BedTool().from_dataframe(df)
# intersect features to windows
try:
intersect_bed = win_bed.intersect(BEDtools_object, c=True)
except:
continue
df = pd.read_table(intersect_bed.fn, header=None, dtype={0: str})
df[4] = category
# compute mean and stdv feature density per-window
mean = df[3].mean()
stdv = df[3].std()
multi1 = mean + (int(sargs['--seed'])*stdv)
multi2 = mean + (int(sargs['--extension'])*stdv)
# extract seeds and try to extend them
seed_list = df[df[3] >= multi1].index.tolist()
#NUOVO
df_seed = df.loc[df[3] >= multi1]
df_ext = df.loc[df[3] >= multi2]
BEDtools_seed = pybedtools.BedTool().from_dataframe(df_seed)
BEDtools_ext = pybedtools.BedTool().from_dataframe(df_ext)
try:
# merge = BEDtools_ext.merge(c=4, o="sum")
merge = BEDtools_ext.merge()
except:
continue
try:
intersect = merge.intersect(BEDtools_seed, u=True)
except:
continue
try:
pre_clusters = intersect.intersect(BEDtools_object, u=True)
except:
continue
features_in_clusters = BEDtools_object.intersect(pre_clusters, wa=True)
final_list = cluster_composer(pre_clusters, features_in_clusters)
clusters = pybedtools.BedTool(final_list)
final_clusters = clusters.intersect(BEDtools_object, c=True)
tclusters = pd.read_table(final_clusters.fn, header=None)
tclusters[4] = category
tbl = tbl.append(tclusters)
return tbl
def do_singletons(catList, pdTbl, clustersTbl, emptyTbl, sargs):
for category in catList:
try:
df = pdTbl[pdTbl.category == category]
df2 = clustersTbl[clustersTbl.category == category]
ft = pybedtools.BedTool().from_dataframe(df).sort()
cl = pybedtools.BedTool().from_dataframe(df2).sort()
st = ft.intersect(cl, v=True)
pdSt = pd.read_table(st.fn, header=None)
emptyTbl = emptyTbl.append(pdSt)
except Exception as e:
continue
return emptyTbl
'''
#extended_seed = []
#seed_extender(extended_seed, seed_list, intersect_bed, multi2)
#pre_clusters = pybedtools.BedTool(extended_seed)
#features_in_clusters = BEDtools_object.intersect(pre_clusters, wa=True)
#final_list = cluster_composer(pre_clusters, features_in_clusters)
#try:
#final_clusters = pybedtools.BedTool(final_list)
#final_clusters = final_clusters.intersect(BEDtools_object, c=True)
#final_clusters = pd.read_table(final_clusters.fn, header=None)
#final_clusters[5] = category
#tbl = tbl.append(final_clusters)
#except Exception as e:
#pass
'''