-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmpu9255.c
332 lines (272 loc) · 11.1 KB
/
mpu9255.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
#include "mpu9255.h"
static uint8_t tx[2] = {0,};
static uint8_t rx[6] = {0,};
// Send single byte to device
void i2c_sendbyte(const i2c_device *device, uint8_t reg, uint8_t data) {
tx[0] = reg;
tx[1] = data;
I2C_Master_BufferWrite(device->i2c, tx, 2, Polling, device->address << 1);
}
// Read single byte from device
uint8_t i2c_readbyte(const i2c_device *device, uint8_t reg) {
tx[0] = reg;
Status s = i2c_master_transaction_write_read(device->i2c, device->address,
tx, 1, rx, 1, Polling);
if (s == Error)
hacf();
return rx[0];
}
// Read n bytes from device
uint8_t *i2c_readbytes(const i2c_device *device, uint8_t reg, uint8_t bytes) {
tx[0] = reg;
uint8_t *rx_data = calloc(bytes, sizeof(uint8_t));
i2c_master_transaction_write_read(device->i2c, device->address,
tx, 1, rx_data, bytes, Polling);
return rx_data;
}
// Perform initialization
i2c_device *mpu9255_init(I2C_TypeDef *I2Cx, TIM_TypeDef *timer) {
I2C_LowLevel_Init(I2Cx);
i2c_device *dev = malloc(sizeof(i2c_device));
dev->i2c = I2Cx;
dev->address = MPU9255_ADDRESS;
dev->timer = timer;
return dev;
}
// Check if device is present on I2C bus
bool mpu9255_check_presence(const i2c_device *device) {
return i2c_readbyte(device, MPU9255_WHO_AM_I) == 0x73;
}
// Perform self test of device based on implementation from:
// https://github.com/kriswiner/MPU-9250
void mpu9255_self_test(const i2c_device *device) {
// set sample divider to 1 kHz
i2c_sendbyte(device, MPU9255_SMPLRT_DIV, 0x00);
// TODO: check whether is possible to perform single write
// set DLPF to 92 Hz
i2c_sendbyte(device, MPU9255_CONFIG, 0x02);
// set gyroscope scale to 250 dfs
i2c_sendbyte(device, MPU9255_GYRO_CONFIG, 0x00);
// set accelerometer bandwidth to 92 Hz
i2c_sendbyte(device, MPU9255_ACCEL_CONFIG2, 0x02);
// set accelerometer scale to 2g
i2c_sendbyte(device, MPU9255_ACCEL_CONFIG, 0x00);
delay_ms(device->timer, 200);
// fetch 200 samples
uint8_t samples = 200;
uint32_t acc_avg[3] = {0,};
uint32_t gyro_avg[3] = {0,};
uint32_t test_acc_avg[3] = {0,};
uint32_t test_gyro_avg[3] = {0,};
double factory_trim[6] = {0.0,};
double destination[6] = {0.0,};
uint8_t self_test[6] = {0,};
uint8_t *acc_data, *gyro_data;
for (uint8_t i = 0; i < samples; ++i) {
// fetch accelerometer and gyroscope reading
acc_data = i2c_readbytes(device, MPU9255_ACCEL_XOUT_H, 6);
gyro_data = i2c_readbytes(device, MPU9255_GYRO_XOUT_H, 6);
for (uint8_t j = 0; j < 3; ++j) {
acc_avg[j] += acc_data[2 * j] << 8 | acc_data[2 * j + 1];
gyro_avg[j] += gyro_data[2 * j] << 8 | gyro_data[2 * j + 1];
}
free(acc_data);
free(gyro_data);
}
usart1_print("Average reading\r\n");
// get average reading
for (uint8_t i = 0; i < 3; ++i) {
acc_avg[i] /= samples;
gyro_avg[i] /= samples;
usart1_printf("[acc] %i: %u\r\n", i, acc_avg[i]);
usart1_printf("[gyro] %i: %u\r\n", i, gyro_avg[i]);
}
// configure gyroscope and accelerometer to perform self test
i2c_sendbyte(device, MPU9255_GYRO_CONFIG, 0xE0);
i2c_sendbyte(device, MPU9255_ACCEL_CONFIG, 0xE0);
delay_ms(device->timer, 200);
for (uint8_t i = 0; i < samples; ++i) {
// fetch accelerometer and gyroscope reading
acc_data = i2c_readbytes(device, MPU9255_ACCEL_XOUT_H, 6);
gyro_data = i2c_readbytes(device, MPU9255_GYRO_XOUT_H, 6);
for (uint8_t j = 0; j < 3; ++j) {
test_acc_avg[j] += acc_data[2 * j] << 8 | acc_data[2 * j + 1];
test_gyro_avg[j] += gyro_data[2 * j] << 8 | gyro_data[2 * j + 1];
}
free(acc_data);
free(gyro_data);
}
usart1_print("Test average reading");
// get average reading
for (uint8_t i = 0; i < 3; ++i) {
test_acc_avg[i] /= samples;
test_gyro_avg[i] /= samples;
usart1_printf("[acc] %i: %u\r\n", i, test_acc_avg[i]);
usart1_printf("[gyro] %i: %u\r\n", i, test_gyro_avg[i]);
}
// configure gyroscope and accelerometer to normal operation
i2c_sendbyte(device, MPU9255_GYRO_CONFIG, 0x00);
i2c_sendbyte(device, MPU9255_ACCEL_CONFIG, 0x00);
delay_ms(device->timer, 200);
// fetch factory values
self_test[0] = i2c_readbyte(device, MPU9255_SELF_TEST_X_ACCEL);
self_test[1] = i2c_readbyte(device, MPU9255_SELF_TEST_Y_ACCEL);
self_test[2] = i2c_readbyte(device, MPU9255_SELF_TEST_Z_ACCEL);
self_test[3] = i2c_readbyte(device, MPU9255_SELF_TEST_X_GYRO);
self_test[4] = i2c_readbyte(device, MPU9255_SELF_TEST_Y_GYRO);
self_test[5] = i2c_readbyte(device, MPU9255_SELF_TEST_Z_GYRO);
for (uint8_t i = 0; i < 6; ++i) {
factory_trim[i] = 2620 * pow(1.01, self_test[i] - 1);
usart1_printf("%u %\r\n", self_test[i], factory_trim[i]);
}
// get difference between factory trim and self test
for (uint8_t i = 0; i < 3; ++i) {
destination[i] = (float) (test_acc_avg[i] - acc_avg[i]) / factory_trim[i];
destination[i + 3] = (float) (test_gyro_avg[i] - gyro_avg[i]) / factory_trim[i + 3];
}
for (uint8_t i = 0; i < 6; ++i) {
usart1_printf("%d: %f\r\n", i, destination[i]);
}
}
void mpu9255_configure(const i2c_device *device) {
i2c_sendbyte(device, MPU9255_PWR_MGMT_1, 0x00);
delay_ms(device->timer, 100);
i2c_sendbyte(device, MPU9255_PWR_MGMT_1, 0x01);
delay_ms(device->timer, 200);
mpu9255_config_reg.dlpf_cfg = 0b11;
i2c_sendbyte(device, MPU9255_CONFIG, mpu9255_config_reg.raw);
i2c_sendbyte(device, MPU9255_SMPLRT_DIV, 0x04);
mpu9255_gyro_config_reg.raw = i2c_readbyte(device, MPU9255_GYRO_CONFIG);
// Clear Fchoice bits
mpu9255_gyro_config_reg.fchoice_b = 0b00;
// Clear AFS bits
mpu9255_gyro_config_reg.gyro_fs_sel = 0b00;
i2c_sendbyte(device, MPU9255_GYRO_CONFIG, mpu9255_gyro_config_reg.raw);
mpu9255_accelerometer_config_reg.raw = i2c_readbyte(device, MPU9255_ACCEL_CONFIG);
mpu9255_accelerometer_config_reg.accel_fs_sel = 0b00;
i2c_sendbyte(device, MPU9255_ACCEL_CONFIG, mpu9255_accelerometer_config_reg.raw);
mpu9255_accelerometer_config2_reg.raw = i2c_readbyte(device, MPU9255_ACCEL_CONFIG2);
mpu9255_accelerometer_config2_reg.accel_fchoice_b = 0b0;
mpu9255_accelerometer_config2_reg.A_DLPFCFG = 0b000;
i2c_sendbyte(device, MPU9255_ACCEL_CONFIG2, mpu9255_accelerometer_config2_reg.raw);
i2c_sendbyte(device, MPU9255_INT_PIN_CFG, 0x22);
i2c_sendbyte(device, MPU9255_INT_ENABLE, 0x01);
delay_ms(device->timer, 200);
}
int16_t *mpu9255_read_accelerometer_data(const i2c_device *device) {
uint8_t *raw_accelerometer_data = i2c_readbytes(device, MPU9255_ACCEL_XOUT_H, 6);
int16_t *accelerometer_data = calloc(3, sizeof(uint16_t));
for (uint8_t i = 0; i < 3; ++i) {
accelerometer_data[i] += raw_accelerometer_data[2 * i] << 8 | \
raw_accelerometer_data[2 * i + 1];
}
free(raw_accelerometer_data);
return accelerometer_data;
}
int16_t *mpu9255_read_gyroscope_data(const i2c_device *device) {
uint8_t *raw_gyroscope_data = i2c_readbytes(device, MPU9255_GYRO_XOUT_H, 6);
int16_t *gyroscope_data = calloc(3, sizeof(uint16_t));
for (uint8_t i = 0; i < 3; ++i) {
gyroscope_data[i] += raw_gyroscope_data[2 * i] << 8 | \
raw_gyroscope_data[2 * i + 1];
}
free(raw_gyroscope_data);
return gyroscope_data;
}
float mpu9255_read_temperature(const i2c_device *device) {
static uint16_t raw_temp;
uint8_t *raw_temp_data = i2c_readbytes(device, MPU9255_TEMP_OUT_H, 2);
raw_temp = raw_temp_data[0] << 8 | raw_temp_data[1];
free(raw_temp_data);
return raw_temp / 333.87f + 21.0f;
}
i2c_device *ak8963_init(I2C_TypeDef *I2Cx, TIM_TypeDef *timer) {
i2c_device *dev = malloc(sizeof(i2c_device));
dev->i2c = I2Cx;
dev->address = AK8963_ADDRESS;
dev->timer = timer;
return dev;
}
bool ak8963_check_presence(const i2c_device *device) {
return i2c_readbyte(device, AK8963_WIA) == 0x48;
}
int16_t *ak8963_read_magnetometer_raw(const i2c_device *device) {
uint8_t *data = i2c_readbytes(device, AK8963_HXL, 7);
int16_t *raw_data = calloc(3, sizeof(float));
raw_data[0] = data[1] << 8 | data[0];
raw_data[1] = data[3] << 8 | data[2];
raw_data[2] = data[5] << 8 | data[4];
free(data);
return raw_data;
}
bool ak8963_self_test(const i2c_device *device, const ak8963_settings *settings) {
// 1) Power down device
ak8963_control1_reg.raw = 0x00;
ak8963_control1_reg.bit = (uint8_t) settings->precision;
i2c_sendbyte(device, AK8963_CNTL1, ak8963_control1_reg.raw);
// 2) Write 1 to SELF in ASTC register
ak8963_self_test_reg.self = 1;
i2c_sendbyte(device, AK8963_ASTC, ak8963_self_test_reg.raw);
// 3) Set self-test mode
ak8963_control1_reg.mode = 0b1000;
i2c_sendbyte(device, AK8963_CNTL1, ak8963_control1_reg.raw);
// 4) Check for Data Ready
do {
ak8963_status1_reg.raw = i2c_readbyte(device, AK8963_ST1);
} while (ak8963_status1_reg.drdy != 1);
// 5) Read measurements
int16_t *data = ak8963_read_magnetometer_raw(device);
int16_t x = data[0], y = data[1], z = data[2];
free(data);
// 6) Write 0 to SELF bit in ASTC
ak8963_self_test_reg.self = 0;
i2c_sendbyte(device, AK8963_ASTC, ak8963_self_test_reg.raw);
// 7) Set Power-Down mode
ak8963_control1_reg.mode = 0b0000;
i2c_sendbyte(device, AK8963_CNTL1, ak8963_control1_reg.raw);
// Check if measurements are correct
if (settings->precision) {
// 16-bit values
if ((x <= 200 && x >= -200) &&
(y <= 200 && y >= -200) &&
(z <= -800 && x >= -3200)) {
return true;
}
} else {
// 14-bit values
if ((x <= 50 && x >= -50) &&
(y <= 50 && y >= -50) &&
(z <= -200 && x >= -800)) {
return true;
}
}
hacf();
return false;
}
float *ak8963_read_magnetometer_data(const i2c_device *device,
const ak8963_settings *settings) {
int16_t *data = ak8963_read_magnetometer_raw(device);
float lsb = settings->precision ? 0.15f : 0.6f;
float *readings = calloc(3, sizeof(float));
readings[0] = data[0] * lsb;
readings[1] = data[1] * lsb;
readings[2] = data[2] * lsb;
free(data);
return readings;
}
void ak8963_configure(const i2c_device *device, const ak8963_settings *settings) {
// Restart device
ak8963_control2_reg.raw = 0x00;
ak8963_control2_reg.srst = 1;
i2c_sendbyte(device, AK8963_CNTL2, ak8963_control2_reg.raw);
do {
print_variable_hex(ak8963_control2_reg.raw);
ak8963_control2_reg.raw = i2c_readbyte(device, AK8963_CNTL2);
} while (ak8963_control2_reg.srst != 0);
// Set mode to continuous measurement with provided precision
ak8963_control1_reg.raw = 0x00;
ak8963_control1_reg.bit = (uint8_t) settings->precision;
ak8963_control1_reg.mode = 0b0110;
print_variable_hex(ak8963_control1_reg.raw);
i2c_sendbyte(device, AK8963_CNTL1, ak8963_control1_reg.raw);
}