-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
131 lines (107 loc) · 5.26 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
"""
Giganti, A.; Mandelli, S.; Bestagini, P.; Tubaro, S.
Learn from Simulations, Adapt to Observations: Super-Resolution of Isoprene Emissions via Unpaired Domain Adaptation.
Remote Sens. 2024, 16, 3963. https://doi.org/10.3390/rs16213963
© 2024 Antonio Giganti - Image and Sound Processing Lab (ISPL) - Politecnico di Milano, Italy.
"""
import random
import numpy as np
import torch
from torchmetrics.functional.image import structural_similarity_index_measure, peak_signal_noise_ratio, error_relative_global_dimensionless_synthesis, universal_image_quality_index
from torchmetrics.functional.regression import mean_squared_error, mean_absolute_error
from sr.metrics.sre import signal_to_reconstruction_error
from sr.metrics.scc import spatial_correlation_coefficient
########################################
# Paths #
########################################
BASE_ROOT_PATH = '/nas/home/agiganti/sr-da-bvoc/'
BASE_DATASET_PATH = '/nas/home/agiganti/green_theme/Datasets/JSTAR/'
BASE_OUTPUT_DIR_PATH_DA = '/nas/home/agiganti/sr-da-bvoc/runs/da/'
BASE_OUTPUT_DIR_PATH_SR = '/nas/home/agiganti/sr-da-bvoc/runs/sr/'
BASE_OUTPUT_DIR_PATH_END2END = '/nas/home/agiganti/sr-da-bvoc/runs/end2end/'
########################################
# Training Utils #
########################################
def set_backend():
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = True
def set_seed(seed: int = 42) -> None:
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def gradient_norm(model):
# Filter out parameters with None gradients
parameters = [p for p in model.parameters() if p.grad is not None]
# Compute the norm of gradients for each parameter and sum them
gradient_norm = sum(p.grad.data.norm(2).item() for p in parameters)
return gradient_norm
def check_gradients(model):
problematic_params = []
for name, param in model.named_parameters():
if param.grad is not None and (torch.isnan(param.grad) | torch.isinf(param.grad)).any():
problematic_params.append(name)
if problematic_params:
problematic_params_str = ', '.join(problematic_params)
return True, problematic_params_str # Gradient contains NaN or Inf values
else:
return False, '' # Gradients are okay
def shorten_datetime(datetime_obj):
# Extract date and time components
date_part = datetime_obj.strftime("%Y%m%d")
time_part = datetime_obj.strftime("%H%M%S")
# Combine date and time components with hyphen
formatted_datetime = f"{date_part}-{time_part}"
return formatted_datetime
########################################
# Evaluation Metrics #
########################################
def tensor2img(tensor, max_val=1):
tensor = torch.clamp(tensor, 0, max_val) # Ensure values are between 0 and max_val
tensor = (tensor * 255.0).round()
return tensor
def compute_metrics(output, original, metrics, ten2img=False, mean=False):
results = {}
output[output < 0.0] = 0.0 # Clip negative SR values to 0
if ten2img:
# Need to convert to uint8 for SSIM
original = tensor2img(original)
output = tensor2img(output)
# Compute metrics for each single image in the batch
if 'SSIM' in metrics:
a = [structural_similarity_index_measure(torch.unsqueeze(output[i], dim=0), torch.unsqueeze(original[i], dim=0)).item() for i in range(output.size(0))]
results['SSIM'] = a
if 'PSNR' in metrics:
a = [peak_signal_noise_ratio(output[i], original[i]).item() for i in range(output.size(0))]
results['PSNR'] = a
if 'MSE' in metrics:
a = [mean_squared_error(output[i], original[i]).item() for i in range(output.size(0))]
results['MSE'] = a
if 'NMSE' in metrics:
# Log NMSE, dB
a = [(10 * torch.log10(mean_squared_error(output[i], original[i]) / torch.mean(original[i] ** 2))).item() for i in range(output.size(0))]
results['NMSE'] = a
if 'MAE' in metrics:
a = [mean_absolute_error(output[i], original[i]).item() for i in range(output.size(0))]
results['MAE'] = a
if 'MaxAE' in metrics:
a = [torch.max(torch.abs(output[i] - original[i])).item() for i in range(output.size(0))]
results['MaxAE'] = a
if 'ERGAS' in metrics:
a = [error_relative_global_dimensionless_synthesis(torch.unsqueeze(output[i], dim=0), torch.unsqueeze(original[i], dim=0)).item() for i in range(output.size(0))]
results['ERGAS'] = a
if 'UIQ' in metrics:
a = [universal_image_quality_index(torch.unsqueeze(output[i], dim=0), torch.unsqueeze(original[i], dim=0)).item() for i in range(output.size(0))]
results['UIQ'] = a
if 'SCC' in metrics:
a = [spatial_correlation_coefficient(output[i], original[i]).item() for i in range(output.size(0))]
results['SCC'] = a
if 'SRE' in metrics:
# Log SRE, dB
a = [signal_to_reconstruction_error(torch.unsqueeze(output[i], dim=0), torch.unsqueeze(original[i], dim=0)).item() for i in range(output.size(0))]
results['SRE'] = a
if mean:
for key in results.keys():
results[key] = np.mean(results[key])
return results