-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
927 lines (810 loc) · 55.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
"""
Giganti, A.; Mandelli, S.; Bestagini, P.; Tubaro, S.
Learn from Simulations, Adapt to Observations: Super-Resolution of Isoprene Emissions via Unpaired Domain Adaptation.
Remote Sens. 2024, 16, 3963. https://doi.org/10.3390/rs16213963
© 2024 Antonio Giganti - Image and Sound Processing Lab (ISPL) - Politecnico di Milano, Italy.
"""
import argparse
import itertools
import os
import torch
import numpy as np
from tqdm import tqdm
from datetime import datetime
from torch.utils.data import DataLoader
from torch.autograd import Variable
from torch.utils.tensorboard import SummaryWriter
from da.models import Generator, Discriminator
from utils import set_backend, set_seed, shorten_datetime, BASE_OUTPUT_DIR_PATH_END2END, BASE_DATASET_PATH, \
compute_metrics, BASE_ROOT_PATH
from da.utils import ReplayBuffer, weights_init_normal, emission_consistency_loss
from dataset import BVOCDataset_end2end
from sr.models.SAN.san import SAN
set_backend()
set_seed(10)
# A domain --> Observed (OMI/GOME)
# B domain --> Simulated (MEGAN)
######################################
# Params ArgumentParser() #
######################################
# RUN PATH EXAMPLE --> runs/end2end/<source_domain_dataset>/<target_domain_dataset>/<timestamp>_<flag>
parser = argparse.ArgumentParser(description='BVOC Super-Resolution + Domain Adaptation Networks Training')
# Network
parser.add_argument('--pretrained', action='store_true', help='Use a pretrained model')
parser.add_argument('--pretrained_da_model_run_flag', type=str, default='',
help='Run flag of the pretrained model weights for the Domain-Adaptation networks')
parser.add_argument('--ptr_sr_run_flag', type=str, default='',
help='Run flag of the pretrained model weights of the Super-Resolution nerwork')
parser.add_argument('--sr_dataset', type=str, default='', help='Dataset of the pretrained SR network. Leave empty to use the same simulated dataset of the DA network')
parser.add_argument('--da_generator_n_residual_blocks', type=int, default=9,
help='Number of residual blocks in the generator')
parser.add_argument('--da_generator_n_layers', type=int, default=2,
help='Number of layers of the generator"s encoder and decoder. The number of layers of the generator"s encoder and decoder are supposed to be the same')
parser.add_argument('--da_generator_kernel_size', type=int, default=3, help='Kernel size of the generator')
parser.add_argument('--da_generator_stride', type=int, default=2, help='Stride of the generator')
parser.add_argument('--da_discriminator_kernel_size', type=int, default=2,
help='Kernel size of the discriminator')
parser.add_argument('--da_discriminator_stride', type=int, default=1, help='Stride of the discriminator')
# Data Specs
parser.add_argument('--source_domain_dataset', type=str, default='',
help='root directory of the source domain (A) dataset')
parser.add_argument('--target_domain_dataset', type=str, default='',
help='root directory of the target domain (B) dataset')
parser.add_argument('--percentage', type=int, default=100,
help='The fraction of the total available elements that will be randomly selected for training.')
# Training Specs
parser.add_argument('--gpu_id', type=int, default=0, help='ID of the GPU to use')
parser.add_argument('--n_epochs', type=int, default=100000, help='Number of epochs to train')
parser.add_argument('--lr', type=float, default=0.0001, help='Learning rate')
parser.add_argument('--lr_patience', type=int, default=10,
help='Learning rate scheduler patience, after which the learning rate is reduced. Works only with on-validation scheduler type.')
parser.add_argument('--lr_delta', type=float, default=1e-4, help='Learning rate scheduler min delta improvement')
parser.add_argument('--es_patience', type=int, default=50,
help='Early stopping patience, after which the training stops')
parser.add_argument('--prefetch_factor', type=int, default=20, help='Prefetch factor for the dataloader')
parser.add_argument('--batch_size', type=int, default=128, help='Batch size')
parser.add_argument('--train_batches_percentage', type=float, default=1.0,
help='Percentage of train batches, after which the validation starts. 1.0=all the train batches are considered before the validation starts')
parser.add_argument('--val_batches_percentage', type=float, default=1.0,
help='Percentage of validation batches, after which the next epochs starts, 1.0=all the validation batches are considered before the next epoch starts')
parser.add_argument('--warmup', type=int, default=3, help='Warmup epochs')
parser.add_argument('--num_workers', type=int, default=6, help='Number of workers of the dataloader')
parser.add_argument('--scheduler_type', type=str, default='on-validation',
help='Type of lr scheduler. Options: global (CosineAnnealingWarmRestarts), on-validation (ReduceLROnPlateau)')
parser.add_argument('--pseudo_e2e', action='store_true',
help='Flag that enable the training as "pseudo end2end", meaning that the input of the DA network is NOT the actual output of the SR network; it is like training the DA networks separately')
parser.add_argument('--ptr_sr', action='store_true',
help='Flag that avoid the training as of the Super-Resolution network, using a pretrained models trained only on B domain data. The SR network is frozen during training')
# Training Regularization
parser.add_argument('--opt_weight_decay', type=float, default=0.0,
help='For Adam, L2 regularization of the loss function. This penalizes large weights in the model, which indirectly discourages large output values. For AdamW, the behaviour is totally different !')
parser.add_argument('--opt_beta1', type=float, default=0.9,
help='Adam optimizer decay of first order momentum of gradient for the Domain Adaptation network')
# Coefficients
parser.add_argument('--beta', type=float, default=1.0,
help='Domain balance of the Super-Resolution loss: [beta] for B domain loss; [1-beta] for A domain loss. Used only if the SR network is trained from scratch')
parser.add_argument('--feature_alignment_loss', action='store_true',
help='Flag that enables the addition of the Feature Alignment loss contribution to the total loss')
parser.add_argument('--gamma', type=float, default=1.0,
help='Discriminators domain balance of the Feature Alignment loss: [gamma] for A domain discriminators (D_A_lr, D_A_hr); [1-gamma] for B domain discriminators (D_B_lr, D_B_hr)')
parser.add_argument('--delta', type=float, default=1.0,
help='Task balance of the Feature Alignment loss: [delta] weight the intermediate task (LR, thus extracting features from D_A_lr, D_B_lr); L_align_1 loss on the paper.'
'[1-delta] weight the final task (HR, thus extracting features from D_A_hr, D_B_hr), L_align_2 loss on the paper.'
'Please, check the paper for more in depth details')
parser.add_argument('--em_consistency_loss', action='store_true',
help='Flag that enables the addition of the Emission Consistency loss (EmC) contribution to the total loss')
# Scale Factors
parser.add_argument('--loss_SR_B_scale_factor', type=float, default=20000,
help='Scale factor of the loss term related to the B domain of the SR network')
parser.add_argument('--loss_SR_A_scale_factor', type=float, default=500,
help='Scale factor of the loss term related to the A domain of the SR network')
parser.add_argument('--loss_emc_scale_factor', type=float, default=10,
help='Scale factor of the loss term related to the Emission Consistency (EmC)')
# Additional Specs
parser.add_argument('--flag', type=str, default='', help='suffix for the output dir')
args = parser.parse_args()
print(args)
########################################
# Paths and Folders #
########################################
start_time = datetime.now()
output_folder_name = f'{shorten_datetime(start_time)}_{args.flag}' if args.flag is not '' else f'{shorten_datetime(start_time)}'
output_dir_path = os.path.join(BASE_OUTPUT_DIR_PATH_END2END, args.source_domain_dataset, args.target_domain_dataset,
output_folder_name) # divided by dataset
tmp_run_name = f'{shorten_datetime(start_time)}_{args.flag}'
writer = SummaryWriter(log_dir=os.path.join(BASE_OUTPUT_DIR_PATH_END2END, 'logs', tmp_run_name))
os.makedirs(output_dir_path, exist_ok=True)
print(
f'==> Output dir: {output_dir_path}\nRun name: {output_folder_name}\nTensorboard dir: {os.path.join(BASE_OUTPUT_DIR_PATH_END2END, "logs", tmp_run_name)} <==')
########################################
# Variables Definition #
########################################
# GPU
torch.cuda.set_device(args.gpu_id)
print("Using GPU: " + str(torch.cuda.current_device()))
# Networks
# SR
sr_net_B = SAN(scale=args.upscaling_factor)
# DA
input_nc, output_nc = 1, 1
# HR
netG_A2B_hr = Generator(input_nc, output_nc, n_layers=args.da_generator_n_layers,
kernel_size=args.da_generator_kernel_size, stride=args.da_generator_stride,
n_residual_blocks=args.da_generator_n_residual_blocks)
netG_B2A_hr = Generator(output_nc, input_nc, n_layers=args.da_generator_n_layers,
kernel_size=args.da_generator_kernel_size, stride=args.da_generator_stride,
n_residual_blocks=args.da_generator_n_residual_blocks)
netD_A_hr = Discriminator(input_nc, kernel_size=args.da_discriminator_kernel_size, stride=args.da_discriminator_stride)
netD_B_hr = Discriminator(output_nc, kernel_size=args.da_discriminator_kernel_size, stride=args.da_discriminator_stride)
# LR
netG_A2B_lr = Generator(input_nc, output_nc, n_layers=args.da_generator_n_layers,
kernel_size=args.da_generator_kernel_size, stride=args.da_generator_stride,
n_residual_blocks=args.da_generator_n_residual_blocks)
netG_B2A_lr = Generator(output_nc, input_nc, n_layers=args.da_generator_n_layers,
kernel_size=args.da_generator_kernel_size, stride=args.da_generator_stride,
n_residual_blocks=args.da_generator_n_residual_blocks)
netD_A_lr = Discriminator(input_nc, kernel_size=args.da_discriminator_kernel_size, stride=args.da_discriminator_stride)
netD_B_lr = Discriminator(output_nc, kernel_size=args.da_discriminator_kernel_size, stride=args.da_discriminator_stride)
# Initialization
sr_net_B.cuda()
netG_A2B_hr.cuda()
netG_B2A_hr.cuda()
netD_A_hr.cuda()
netD_B_hr.cuda()
netG_A2B_lr.cuda()
netG_B2A_lr.cuda()
netD_A_lr.cuda()
netD_B_lr.cuda()
netG_A2B_hr.apply(weights_init_normal)
netG_B2A_hr.apply(weights_init_normal)
netD_A_hr.apply(weights_init_normal)
netD_B_hr.apply(weights_init_normal)
netG_A2B_lr.apply(weights_init_normal)
netG_B2A_lr.apply(weights_init_normal)
netD_A_lr.apply(weights_init_normal)
netD_B_lr.apply(weights_init_normal)
# Pretrained Nets
if args.ptr_sr or args.pretrained:
# Decide whether to use the same simulated dataset of the DA network or a different one, for the SR network
if args.sr_dataset is not '': sr_dataset = args.sr_dataset
else: sr_dataset = args.target_domain_dataset
pretrained_sr_model = os.path.join(BASE_ROOT_PATH, 'runs', 'sr', sr_dataset, 'x' + args.upscaling_factor, 'SAN', args.ptr_sr_run_flag, 'SAN_best.pth')
sr_net_B.load_state_dict(torch.load(pretrained_sr_model, map_location=torch.device('cuda')))
print(f'==> Pretrained SR net from run {args.ptr_sr_run_flag} loaded !')
if args.pretrained:
pretrained_da_model_folder = os.path.join(BASE_ROOT_PATH, 'runs', 'da',
args.source_domain_dataset, args.target_domain_dataset,
args.pretrained_da_model_run_flag)
netG_A2B_hr.load_state_dict(
torch.load(os.path.join(pretrained_da_model_folder, 'netG_A2B_best.pth'), map_location=torch.device('cuda')))
netG_B2A_hr.load_state_dict(
torch.load(os.path.join(pretrained_da_model_folder, 'netG_B2A_best.pth'), map_location=torch.device('cuda')))
netD_A_hr.load_state_dict(
torch.load(os.path.join(pretrained_da_model_folder, 'netD_A_best.pth'), map_location=torch.device('cuda')))
netD_B_hr.load_state_dict(
torch.load(os.path.join(pretrained_da_model_folder, 'netD_B_best.pth'), map_location=torch.device('cuda')))
netG_A2B_lr.load_state_dict(
torch.load(os.path.join(pretrained_da_model_folder, 'netG_A2B_best.pth'), map_location=torch.device('cuda')))
netG_B2A_lr.load_state_dict(
torch.load(os.path.join(pretrained_da_model_folder, 'netG_B2A_best.pth'), map_location=torch.device('cuda')))
netD_A_lr.load_state_dict(
torch.load(os.path.join(pretrained_da_model_folder, 'netD_A_best.pth'), map_location=torch.device('cuda')))
netD_B_lr.load_state_dict(
torch.load(os.path.join(pretrained_da_model_folder, 'netD_B_best.pth'), map_location=torch.device('cuda')))
print(f'==> Pretrained DA nets from run {args.pretrained_da_model_run_flag} loaded !')
# Losses
criterion_GAN = torch.nn.MSELoss()
criterion_cycle = torch.nn.L1Loss()
criterion_identity = torch.nn.L1Loss()
criterion_feature = torch.nn.MSELoss()
criterion_SR = torch.nn.MSELoss()
# Emission Consistency (EmC) Loss args
emc_loss_kwargs = {'overlapping_factor': 1,
'patch_size_lr': 4,
'upscaling_factor': 2}
# Optimizers & LR schedulers
optimizer_kwargs = {'lr': args.lr, 'betas': (args.opt_beta1, 0.999), 'weight_decay': args.opt_weight_decay}
optimizer_COMB = torch.optim.Adam(
itertools.chain((sr_net_B.parameters() if not args.ptr_sr else ()), netG_A2B_hr.parameters(),
netG_B2A_hr.parameters(), netG_A2B_lr.parameters(), netG_B2A_lr.parameters()), **optimizer_kwargs)
optimizer_Ds = torch.optim.Adam(
itertools.chain(netD_A_hr.parameters(), netD_A_lr.parameters(), netD_B_hr.parameters(),
netD_B_lr.parameters()), **optimizer_kwargs)
if args.scheduler_type == 'global':
lr_scheduler_kwargs = {'T_0': 5, 'T_mult': 2, 'eta_min': 1e-07}
lr_scheduler_COMB = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer_COMB, **lr_scheduler_kwargs)
lr_scheduler_Ds = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer_Ds, **lr_scheduler_kwargs)
elif args.scheduler_type == 'on-validation':
lr_scheduler_kwargs = {'mode': 'min', 'factor': 0.1, 'patience': args.lr_patience, 'min_lr': 1e-07,
'threshold': args.lr_delta}
lr_scheduler_COMB = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_COMB, **lr_scheduler_kwargs)
lr_scheduler_Ds = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_Ds, **lr_scheduler_kwargs)
# Inputs & targets memory allocation for the DA network
Tensor = torch.cuda.FloatTensor
target_real = Variable(Tensor(args.batch_size, 1).fill_(1.0), requires_grad=False)
target_fake = Variable(Tensor(args.batch_size, 1).fill_(0.0), requires_grad=False)
fake_A_buffer_hr = ReplayBuffer()
fake_B_buffer_hr = ReplayBuffer()
fake_A_buffer_lr = ReplayBuffer()
fake_B_buffer_lr = ReplayBuffer()
# Datasets and DataLoaders
dataset_kwargs = {'root_source_domain_dataset': os.path.join(BASE_DATASET_PATH, args.source_domain_dataset),
# OMI/GOME (A) source
'root_target_domain_dataset': os.path.join(BASE_DATASET_PATH, args.target_domain_dataset),
# MEGAN (B) target
'downscale_factor': 2,
'unaligned': True,
'quantile_transform': True,
'downscaling_mode': 'bicubic',
'percentage': args.percentage,
}
dataloader_kwargs = {'batch_size': args.batch_size,
'num_workers': args.num_workers,
'pin_memory': True,
'prefetch_factor': args.prefetch_factor,
}
train_dataloader = DataLoader(
BVOCDataset_end2end(**dataset_kwargs, dataset_mode='train'), shuffle=True, drop_last=True, **dataloader_kwargs)
val_dataloader = DataLoader(
BVOCDataset_end2end(**dataset_kwargs, dataset_mode='val'), shuffle=False, drop_last=True, **dataloader_kwargs)
# Info
print(f'\nBatches: \tTR {len(train_dataloader)} | VL {len(val_dataloader)}'
f'\nN. Maps: \tTR {len(train_dataloader) * args.batch_size} | VL {len(val_dataloader) * args.batch_size}')
########################################
# Training #
########################################
sr_metrics = ['SSIM', 'PSNR', 'NMSE', 'UIQ', 'SCC', 'MaxAE']
COMB_best_val_loss = np.inf
best_epoch = 1
batches_before_valid = round(len(train_dataloader) * args.train_batches_percentage)
batches_before_break_valid = round(len(val_dataloader) * args.val_batches_percentage)
tr_len = min(len(train_dataloader), batches_before_valid)
vl_len = min(len(val_dataloader), batches_before_break_valid)
tb_img_idx = 1 # TensorBoard selected image's index of the current batch
print(f'\n{start_time}\tTrain starts !')
print(f'Considered batches TR: {batches_before_valid} | VL: {batches_before_break_valid}')
for epoch in range(1, args.n_epochs):
# ———————————————— Epoch Starts ————————————————
###################################### T R A I N ######################################
# Loss and nets initialization
total_train_loss_DA_part, total_train_loss_Ds_part, total_val_loss_DA_part, total_val_loss_Ds_part = 0, 0, 0, 0
total_train_loss_SR_part, total_val_loss_SR_part, = 0, 0
total_train_loss_feature, total_val_loss_feature = 0, 0
total_train_loss_em_consistency, total_val_loss_em_consistency = 0, 0
total_train_loss_feature_intermediate, total_train_loss_feature_final = 0, 0
total_val_loss_feature_intermediate, total_val_loss_feature_final = 0, 0
total_train_loss_COMB, total_val_loss_COMB = 0, 0 # <== Combined Loss
total_train_loss_G, total_train_loss_D_A, total_train_loss_D_B = 0, 0, 0
total_train_loss_G_hr, total_train_loss_D_A_hr, total_train_loss_D_B_hr = 0, 0, 0
total_train_loss_G_lr, total_train_loss_D_A_lr, total_train_loss_D_B_lr = 0, 0, 0
total_train_loss_G_Identity_hr, total_train_loss_G_GAN_hr, total_train_loss_G_Cycle_hr = 0, 0, 0
total_train_loss_G_Identity_lr, total_train_loss_G_GAN_lr, total_train_loss_G_Cycle_lr = 0, 0, 0
total_val_loss_G, total_val_loss_D_A, total_val_loss_D_B = 0, 0, 0
total_val_loss_G_hr, total_val_loss_D_A_hr, total_val_loss_D_B_hr = 0, 0, 0
total_val_loss_G_lr, total_val_loss_D_A_lr, total_val_loss_D_B_lr = 0, 0, 0
total_val_loss_G_Identity_hr, total_val_loss_G_GAN_hr, total_val_loss_G_Cycle_hr, total_val_loss_D_hr = 0, 0, 0, 0
total_val_loss_G_Identity_lr, total_val_loss_G_GAN_lr, total_val_loss_G_Cycle_lr, total_val_loss_D_lr = 0, 0, 0, 0
netG_A2B_hr.train()
netG_A2B_lr.train()
netG_B2A_hr.train()
netG_B2A_lr.train()
netD_A_hr.train()
netD_A_lr.train()
netD_B_hr.train()
netD_B_lr.train()
if args.ptr_sr:
sr_net_B.eval()
else:
sr_net_B.train()
for i, batch in enumerate(tqdm(train_dataloader, desc=f'Epoch {epoch}/{args.n_epochs}', unit='batch')):
# —————————————————————————————————————————————— S T E P starts ———————————————————————————————————
# Set model input
# (b, c, h, w)
real_A_hr = batch['A_hr'].cuda() # HR, OMI/GOMI (A), for DA
real_A_lr = batch['A_lr'].cuda() # LR, OMI/GOMI (A), for testing the SR --> DA
real_B_hr = batch['B_hr'].cuda() # HR, MEGAN (B), for SR and/or DA
real_B_lr = batch['B_lr'].cuda() # LR, MEGAN (B), for SR
optimizer_COMB.zero_grad() # it acts for the A2B (hr and lr), B2A (hr and lr)
###################################### Super-Resolution ########################################################
if not args.ptr_sr:
# Loss 1: qt_B_hr_hat_B - qtB_hr_B | B domain
# Classic SR I/O loss
real_B_hr_hat = sr_net_B(real_B_lr)
train_loss_SR_B = criterion_SR(real_B_hr_hat, real_B_hr) # Loss on B domain
# Loss 2: qt_A_hat_hr_hat_B - qt_A_hat_hr_B | A domain
# Aka fake_sr_A - fake_A, or better DA_B2A(SR_B(real_B_lr)) - DA_B2A(real_B), thus B elements on the A domain
# Optimal case: they are the same. Needed to force the SR network to super-resolve also in the A domain, but using ONLY B domain data (qt_A_hat)
qt_A_hat_hr_hat_B = netG_B2A_hr(real_B_hr_hat)
qt_A_hat_hr_B = netG_B2A_hr(real_B_hr)
train_loss_SR_A = criterion_SR(qt_A_hat_hr_hat_B, qt_A_hat_hr_B) # Loss on A domain
# Scaling
train_loss_SR_B = args.loss_SR_B_scale_factor * train_loss_SR_B
train_loss_SR_A = args.loss_SR_A_scale_factor * train_loss_SR_A
# Combining the losses
train_loss_SR_part = args.beta * train_loss_SR_B + (1 - args.beta) * train_loss_SR_A # <== SR part loss
else:
train_loss_SR_part = 0
###################################### Input Settings #####################################################
# ATTENTION: these settings have to be done after the SR process, for pipeline coherence.
# Check the "train_configuration.md" table for all the possible configs!
intermediate_task = netG_A2B_lr(real_A_lr) # <== (A2B(A))
if args.ptr_sr:
with torch.no_grad():
intermediate_task_sr = sr_net_B(intermediate_task) # <== SR(A2B(A))
else:
intermediate_task_sr = sr_net_B(intermediate_task)
final_task = netG_B2A_hr(intermediate_task_sr) # <== OUR FINAL TASK !!! B2A(SR((A2B(A))))
if not args.pseudo_e2e: # true end2end training (OUR PROPOSAL)
real_B_hr = intermediate_task_sr.detach() # shortcut to use the intermediate_task_sr as input of the DA hr networks
# else, we use the real_B_hr as it is, thus performing a pseudo end2end training
##################################### Domain Adaptation ########################################################
# PAY ATTENTION: we have 2 different CycleGAN architectures (aka A2B, B2A, D_A, D_B), one for the HR and one for the LR patches
###### Generators A2B and B2A ######
# Identity loss
# G_A2B(B) should equal B if real B is fed
same_B_hr = netG_A2B_hr(real_B_hr)
same_B_lr = netG_A2B_lr(real_B_lr)
loss_identity_B_hr = criterion_identity(same_B_hr, real_B_hr) * 5.0
loss_identity_B_lr = criterion_identity(same_B_lr, real_B_lr) * 5.0
# G_B2A(A) should equal A if real A is fed
same_A_hr = netG_B2A_hr(real_A_hr)
same_A_lr = netG_B2A_lr(real_A_lr)
loss_identity_A_hr = criterion_identity(same_A_hr, real_A_hr) * 5.0
loss_identity_A_lr = criterion_identity(same_A_lr, real_A_lr) * 5.0
# GAN loss
fake_B_hr = netG_A2B_hr(real_A_hr)
fake_B_lr = netG_A2B_lr(real_A_lr)
pred_fake_hr = netD_B_hr(fake_B_hr)
pred_fake_lr = netD_B_lr(fake_B_lr)
loss_GAN_A2B_hr = criterion_GAN(pred_fake_hr, target_real)
loss_GAN_A2B_lr = criterion_GAN(pred_fake_lr, target_real)
fake_A_hr = netG_B2A_hr(real_B_hr)
fake_A_lr = netG_B2A_lr(real_B_lr)
pred_fake_hr = netD_A_hr(fake_A_hr)
pred_fake_lr = netD_A_lr(fake_A_lr)
loss_GAN_B2A_hr = criterion_GAN(pred_fake_hr, target_real)
loss_GAN_B2A_lr = criterion_GAN(pred_fake_lr, target_real)
# Cycle loss
recovered_A_hr = netG_B2A_hr(fake_B_hr)
recovered_A_lr = netG_B2A_lr(fake_B_lr)
loss_cycle_ABA_hr = criterion_cycle(recovered_A_hr, real_A_hr) * 10.0
loss_cycle_ABA_lr = criterion_cycle(recovered_A_lr, real_A_lr) * 10.0
recovered_B_hr = netG_A2B_hr(fake_A_hr)
recovered_B_lr = netG_A2B_lr(fake_A_lr)
loss_cycle_BAB_hr = criterion_cycle(recovered_B_hr, real_B_hr) * 10.0
loss_cycle_BAB_lr = criterion_cycle(recovered_B_lr, real_B_lr) * 10.0
# Total loss
train_loss_G_hr = loss_identity_A_hr + loss_identity_B_hr + loss_GAN_A2B_hr + loss_GAN_B2A_hr + loss_cycle_ABA_hr + loss_cycle_BAB_hr
train_loss_G_lr = loss_identity_A_lr + loss_identity_B_lr + loss_GAN_A2B_lr + loss_GAN_B2A_lr + loss_cycle_ABA_lr + loss_cycle_BAB_lr
# Loss to be monitored
train_loss_B2A_hr_related = loss_identity_A_hr + loss_GAN_B2A_hr + loss_cycle_ABA_hr
train_loss_A2B_lr_related = loss_identity_B_lr + loss_GAN_A2B_lr + loss_cycle_BAB_lr
# Combining the losses
train_loss_DA_part = train_loss_G_hr + train_loss_G_lr # <== DA part loss
### Here we guide the GAN generation ###
# Feature alignment loss [to be done THEORETICALLY only at the END of the pipeline (B2A)]
# Force the HR_A and HR_hat_A embeddings have to be the same. Needed for a correct final DA (B2A)
# >> feature and NOT distribution, because we have the GT for the A domain
# Needed JUST for D_A, but also done for D_B for loss regularization, if needed
obj_pred_emb_A_hr, obj_pred_emb_B_hr = netD_A_hr.model(final_task), netD_B_hr.model(final_task)
obj_gt_emb_A_hr, obj_gt_emb_B_hr = netD_A_hr.model(real_A_hr), netD_B_hr.model(real_A_hr)
train_loss_feature_A_hr = criterion_feature(obj_pred_emb_A_hr, obj_gt_emb_A_hr)
train_loss_feature_B_hr = criterion_feature(obj_pred_emb_B_hr, obj_gt_emb_B_hr)
# Done also on the LR counterpart, thus in the intermediate_task point (A2B),even if we do not have the GT for the A domain
obj_pred_emb_B_lr, obj_pred_emb_A_lr = netD_B_lr.model(intermediate_task), netD_A_lr.model(intermediate_task)
obj_gt_emb_B_lr, obj_gt_emb_A_lr = netD_B_lr.model(real_B_lr), netD_A_lr.model(real_B_lr)
train_loss_feature_B_lr = criterion_feature(obj_pred_emb_B_lr, obj_gt_emb_B_lr)
train_loss_feature_A_lr = criterion_feature(obj_pred_emb_A_lr, obj_gt_emb_A_lr)
# Combining the losses
# Alignment Loss
L_align_1 = args.gamma * train_loss_feature_A_lr + (1 - args.gamma) * train_loss_feature_B_lr
L_align_2 = args.gamma * train_loss_feature_A_hr + (1 - args.gamma) * train_loss_feature_B_hr
train_loss_feature = args.delta * L_align_1 + (1 - args.delta) * L_align_2 # <== Feature Alignment loss
# Emission Consistency Loss
train_loss_em_consistency = args.loss_emc_scale_factor * emission_consistency_loss(final_task, real_A_lr,
**emc_loss_kwargs) # <== Emission Consistency Loss
##################################### Combined Loss #######################################################
# ==> FINAL LOSS: Super-Resolution + Generators + Feature Alignment + Emission Consistency <==
train_loss_COMB = train_loss_SR_part + train_loss_DA_part + args.feature_alignment_loss * train_loss_feature + args.em_consistency_loss * train_loss_em_consistency
# Backward
train_loss_COMB.backward()
optimizer_COMB.step()
###################################
###### Discriminators A and B ######
optimizer_Ds.zero_grad() # it acts for the D_A (hr and lr) and D_B (hr and lr) networks
###### Discriminator A ######
# Real loss
pred_real_hr = netD_A_hr(real_A_hr)
pred_real_lr = netD_A_lr(real_A_lr)
loss_D_real_hr = criterion_GAN(pred_real_hr, target_real)
loss_D_real_lr = criterion_GAN(pred_real_lr, target_real)
# Fake loss
fake_A_hr = fake_A_buffer_hr.push_and_pop(fake_A_hr)
fake_A_lr = fake_A_buffer_lr.push_and_pop(fake_A_lr)
pred_fake_hr = netD_A_hr(fake_A_hr.detach())
pred_fake_lr = netD_A_lr(fake_A_lr.detach())
loss_D_fake_hr = criterion_GAN(pred_fake_hr, target_fake)
loss_D_fake_lr = criterion_GAN(pred_fake_lr, target_fake)
# Total loss
train_loss_D_A_hr = (loss_D_real_hr + loss_D_fake_hr) * 0.5
train_loss_D_A_lr = (loss_D_real_lr + loss_D_fake_lr) * 0.5
###### Discriminator B ######
# Real loss
pred_real_hr = netD_B_hr(real_B_hr)
pred_real_lr = netD_B_lr(real_B_lr)
loss_D_real_hr = criterion_GAN(pred_real_hr, target_real)
loss_D_real_lr = criterion_GAN(pred_real_lr, target_real)
# Fake loss
fake_B_hr = fake_B_buffer_hr.push_and_pop(fake_B_hr)
fake_B_lr = fake_B_buffer_lr.push_and_pop(fake_B_lr)
pred_fake_hr = netD_B_hr(fake_B_hr.detach())
pred_fake_lr = netD_B_lr(fake_B_lr.detach())
loss_D_fake_hr = criterion_GAN(pred_fake_hr, target_fake)
loss_D_fake_lr = criterion_GAN(pred_fake_lr, target_fake)
# Total loss
train_loss_D_B_hr = (loss_D_real_hr + loss_D_fake_hr) * 0.5
train_loss_D_B_lr = (loss_D_real_lr + loss_D_fake_lr) * 0.5
###### Losses Ds ######
# Discriminators
train_loss_Ds_HR = train_loss_D_A_hr + train_loss_D_B_hr
train_loss_Ds_LR = train_loss_D_A_lr + train_loss_D_B_lr
# Combining the losses
train_loss_Ds_part = train_loss_Ds_HR + train_loss_Ds_LR # <== Ds part loss
# Backward
train_loss_Ds_part.backward()
optimizer_Ds.step()
################################################################################################################
# —————————————————————————————————————————————— S T E P ends ———————————————————————————————————
total_train_loss_DA_part += train_loss_DA_part.item()
total_train_loss_Ds_part += train_loss_Ds_part.item()
total_train_loss_SR_part += train_loss_SR_part
total_train_loss_G_hr += train_loss_G_hr.item()
total_train_loss_D_A_hr += train_loss_D_A_hr.item()
total_train_loss_D_B_hr += train_loss_D_B_hr.item()
total_train_loss_G_Identity_hr += loss_identity_A_hr + loss_identity_B_hr
total_train_loss_G_GAN_hr += loss_GAN_A2B_hr + loss_GAN_B2A_hr
total_train_loss_G_Cycle_hr += loss_cycle_ABA_hr + loss_cycle_BAB_hr
total_train_loss_G_lr += train_loss_G_lr.item()
total_train_loss_D_A_lr += train_loss_D_A_lr.item()
total_train_loss_D_B_lr += train_loss_D_B_lr.item()
total_train_loss_G_Identity_lr += loss_identity_A_lr + loss_identity_B_lr
total_train_loss_G_GAN_lr += loss_GAN_A2B_lr + loss_GAN_B2A_lr
total_train_loss_G_Cycle_lr += loss_cycle_ABA_lr + loss_cycle_BAB_lr
total_train_loss_feature += train_loss_feature.item()
total_train_loss_feature_intermediate += L_align_1.item()
total_train_loss_feature_final += L_align_2.item()
total_train_loss_em_consistency += train_loss_em_consistency
total_train_loss_COMB += train_loss_COMB.item()
# Progress report (TensorBoard)
x_axis_train = epoch * tr_len
writer.add_image('Maps/Train/LR (Real_A_lr, qt_A_hr_A)', real_A_lr[tb_img_idx], x_axis_train)
writer.add_image('Maps/Train/HR (Real_A_hr, qt_A_hr_A)', real_A_hr[tb_img_idx], x_axis_train)
with torch.no_grad():
qt_A_hat_hr_hat_A = netG_B2A_hr(sr_net_B(netG_A2B_lr(real_A_lr))) # <== OUR FINAL TASK !!!
writer.add_image('Maps/Train/SR (B2A(SR(A2B(LR_A))), qt_A_hat_hr_hat_A)', qt_A_hat_hr_hat_A[tb_img_idx],
x_axis_train)
if not args.ptr_sr:
writer.add_image('Maps/Train/LR (Real_B_lr)', real_B_lr[tb_img_idx], x_axis_train)
writer.add_image('Maps/Train/HR (Real_B_hr)', real_B_hr[tb_img_idx], x_axis_train)
writer.add_image('Maps/Train/SR (Real_B_hr_hat)', real_B_hr[tb_img_idx], x_axis_train)
writer.add_histogram('Hist/Train/HR (Real_A_hr, qt_A_hr_A)', real_A_hr[tb_img_idx], x_axis_train)
writer.add_histogram('Hist/Train/SR (B2A(SR(A2B(LR_A))), qt_A_hat_hr_hat_A)', qt_A_hat_hr_hat_A[tb_img_idx],
x_axis_train)
# Early validation, when a certain percentage of train batches is processed
if i == batches_before_valid:
break # exit from the inner for loop (TR BATCHES), start the validation
###################################### V A L I D A T I O N ######################################
with torch.no_grad():
for i, batch in enumerate(tqdm(val_dataloader, desc=f'Epoch {epoch}/{args.n_epochs}', unit='batch')):
# —————————————————————————————————————————————— S T E P starts ———————————————————————————————————
# Set model input
# (b, c, h, w)
real_A_hr = batch['A_hr'].cuda() # HR, OMI/GOMI (A), for DA
real_A_lr = batch['A_lr'].cuda() # LR, OMI/GOMI (A), for testing the SR --> DA
real_B_lr = batch['B_lr'].cuda() # LR, MEGAN (B), for SR
real_B_hr = batch['B_hr'].cuda() # HR, MEGAN (B), for SR and/or DA
###################################### Super-Resolution ########################################################
if not args.ptr_sr:
real_B_hr_hat = sr_net_B(real_B_lr)
val_loss_SR_B = criterion_SR(real_B_hr_hat, real_B_hr) # Loss on B domain
qt_A_hat_hr_hat_B = netG_B2A_hr(real_B_hr_hat)
qt_A_hat_hr_B = netG_B2A_hr(real_B_hr)
val_loss_SR_A = criterion_SR(qt_A_hat_hr_hat_B, qt_A_hat_hr_B) # Loss on A domain
# Scaling
val_loss_SR_B = args.loss_SR_B_scale_factor * val_loss_SR_B
val_loss_SR_A = args.loss_SR_A_scale_factor * val_loss_SR_A
# Combining the losses
val_loss_SR_part = args.beta * val_loss_SR_B + (1 - args.beta) * val_loss_SR_A # <== SR part loss
else:
val_loss_SR_part = 0
###################################### Input Settings #####################################################
intermediate_task = netG_A2B_lr(real_A_lr) # <== (A2B(A))
intermediate_task_sr = sr_net_B(intermediate_task) # <== SR(A2B(A))
final_task = netG_B2A_hr(intermediate_task_sr) # <== OUR FINAL TASK !!! B2A(SR((A2B(A))))
if not args.pseudo_e2e:
real_B_hr = intermediate_task_sr
##################################### Domain Adaptation ########################################################
# PAY ATTENTION: we have 2 different CycleGAN architectures (aka A2B, B2A, D_A, D_B), one for the HR and one for the LR patches
###### Generators A2B and B2A ######
# Identity loss
# G_A2B(B) should equal B if real B is fed
same_B_hr = netG_A2B_hr(real_B_hr)
same_B_lr = netG_A2B_lr(real_B_lr)
loss_identity_B_hr = criterion_identity(same_B_hr, real_B_hr) * 5.0
loss_identity_B_lr = criterion_identity(same_B_lr, real_B_lr) * 5.0
# G_B2A(A) should equal A if real A is fed
same_A_hr = netG_B2A_hr(real_A_hr)
same_A_lr = netG_B2A_lr(real_A_lr)
loss_identity_A_hr = criterion_identity(same_A_hr, real_A_hr) * 5.0
loss_identity_A_lr = criterion_identity(same_A_lr, real_A_lr) * 5.0
# GAN loss
fake_B_hr = netG_A2B_hr(real_A_hr)
fake_B_lr = netG_A2B_lr(real_A_lr)
pred_fake_hr = netD_B_hr(fake_B_hr)
pred_fake_lr = netD_B_lr(fake_B_lr)
loss_GAN_A2B_hr = criterion_GAN(pred_fake_hr, target_real)
loss_GAN_A2B_lr = criterion_GAN(pred_fake_lr, target_real)
fake_A_hr = netG_B2A_hr(real_B_hr)
fake_A_lr = netG_B2A_lr(real_B_lr)
pred_fake_hr = netD_A_hr(fake_A_hr)
pred_fake_lr = netD_A_lr(fake_A_lr)
loss_GAN_B2A_hr = criterion_GAN(pred_fake_hr, target_real)
loss_GAN_B2A_lr = criterion_GAN(pred_fake_lr, target_real)
# Cycle loss
recovered_A_hr = netG_B2A_hr(fake_B_hr)
recovered_A_lr = netG_B2A_lr(fake_B_lr)
loss_cycle_ABA_hr = criterion_cycle(recovered_A_hr, real_A_hr) * 10.0
loss_cycle_ABA_lr = criterion_cycle(recovered_A_lr, real_A_lr) * 10.0
recovered_B_hr = netG_A2B_hr(fake_A_hr)
recovered_B_lr = netG_A2B_lr(fake_A_lr)
loss_cycle_BAB_hr = criterion_cycle(recovered_B_hr, real_B_hr) * 10.0
loss_cycle_BAB_lr = criterion_cycle(recovered_B_lr, real_B_lr) * 10.0
# Total loss
val_loss_G_hr = loss_identity_A_hr + loss_identity_B_hr + loss_GAN_A2B_hr + loss_GAN_B2A_hr + loss_cycle_ABA_hr + loss_cycle_BAB_hr
val_loss_G_lr = loss_identity_A_lr + loss_identity_B_lr + loss_GAN_A2B_lr + loss_GAN_B2A_lr + loss_cycle_ABA_lr + loss_cycle_BAB_lr
# Loss to be monitored
val_loss_B2A_hr_related = loss_identity_A_hr + loss_GAN_B2A_hr + loss_cycle_ABA_hr
val_loss_A2B_lr_related = loss_identity_B_lr + loss_GAN_A2B_lr + loss_cycle_BAB_lr
# Combining the losses
val_loss_DA_part = val_loss_G_hr + val_loss_G_lr # <== DA part loss
# Feature alignment loss
obj_pred_emb_A_hr, obj_pred_emb_B_hr = netD_A_hr.model(final_task), netD_B_hr.model(final_task)
obj_gt_emb_A_hr, obj_gt_emb_B_hr = netD_A_hr.model(real_A_hr), netD_B_hr.model(real_A_hr)
val_loss_feature_A_hr = criterion_feature(obj_pred_emb_A_hr, obj_gt_emb_A_hr)
val_loss_feature_B_hr = criterion_feature(obj_pred_emb_B_hr, obj_gt_emb_B_hr)
# LR counterpart
obj_pred_emb_B_lr, obj_pred_emb_A_lr = netD_B_lr.model(intermediate_task), netD_A_lr.model(
intermediate_task)
obj_gt_emb_B_lr, obj_gt_emb_A_lr = netD_B_lr.model(real_B_lr), netD_A_lr.model(real_B_lr)
val_loss_feature_B_lr = criterion_feature(obj_pred_emb_B_lr, obj_gt_emb_B_lr)
val_loss_feature_A_lr = criterion_feature(obj_pred_emb_A_lr, obj_gt_emb_A_lr)
# Combining the losses
# Alignment Loss
L_align_1 = args.gamma * val_loss_feature_A_lr + (1 - args.gamma) * val_loss_feature_B_lr
L_align_2 = args.gamma * val_loss_feature_A_hr + (1 - args.gamma) * val_loss_feature_B_hr
val_loss_feature = args.delta * L_align_1 + (1 - args.delta) * L_align_2 # <== Feature Alignment loss
# Emission Consistency Loss
val_loss_em_consistency = args.loss_emc_scale_factor * emission_consistency_loss(final_task, real_A_lr,
**emc_loss_kwargs) # <== Emission Consistency Loss
##################################### Combined Loss #######################################################
# ==> FINAL LOSS: Super-Resolution + Generators + Feature Alignment + Emission Consistency <==
val_loss_COMB = val_loss_SR_part + val_loss_DA_part + args.feature_alignment_loss * val_loss_feature + args.em_consistency_loss * val_loss_em_consistency
###################################
###### Discriminator A ######
# Real loss
pred_real_hr = netD_A_hr(real_A_hr)
pred_real_lr = netD_A_lr(real_A_lr)
loss_D_real_hr = criterion_GAN(pred_real_hr, target_real)
loss_D_real_lr = criterion_GAN(pred_real_lr, target_real)
# Fake loss
fake_A_hr = fake_A_buffer_hr.push_and_pop(fake_A_hr)
fake_A_lr = fake_A_buffer_lr.push_and_pop(fake_A_lr)
pred_fake_hr = netD_A_hr(fake_A_hr.detach())
pred_fake_lr = netD_A_lr(fake_A_lr.detach())
loss_D_fake_hr = criterion_GAN(pred_fake_hr, target_fake)
loss_D_fake_lr = criterion_GAN(pred_fake_lr, target_fake)
# Total loss
val_loss_D_A_hr = (loss_D_real_hr + loss_D_fake_hr) * 0.5
val_loss_D_A_lr = (loss_D_real_lr + loss_D_fake_lr) * 0.5
###### Discriminator B ######
# Real loss
pred_real_hr = netD_B_hr(real_B_hr)
pred_real_lr = netD_B_lr(real_B_lr)
loss_D_real_hr = criterion_GAN(pred_real_hr, target_real)
loss_D_real_lr = criterion_GAN(pred_real_lr, target_real)
# Fake loss
fake_B_hr = fake_B_buffer_hr.push_and_pop(fake_B_hr)
fake_B_lr = fake_B_buffer_lr.push_and_pop(fake_B_lr)
pred_fake_hr = netD_B_hr(fake_B_hr.detach())
pred_fake_lr = netD_B_lr(fake_B_lr.detach())
loss_D_fake_hr = criterion_GAN(pred_fake_hr, target_fake)
loss_D_fake_lr = criterion_GAN(pred_fake_lr, target_fake)
# Total loss
val_loss_D_B_hr = (loss_D_real_hr + loss_D_fake_hr) * 0.5
val_loss_D_B_lr = (loss_D_real_lr + loss_D_fake_lr) * 0.5
###### Losses Ds ######
# Discriminators
val_loss_Ds_HR = val_loss_D_A_hr + val_loss_D_B_hr
val_loss_Ds_LR = val_loss_D_A_lr + val_loss_D_B_lr
# Combining the losses
val_loss_Ds_part = val_loss_Ds_HR + val_loss_Ds_LR # <== Ds part loss
################################################################################################################
# —————————————————————————————————————————————— S T E P ends ———————————————————————————————————
total_val_loss_DA_part += val_loss_DA_part.item()
total_val_loss_Ds_part += val_loss_Ds_part.item()
total_val_loss_SR_part += val_loss_SR_part
total_val_loss_G_hr += val_loss_G_hr.item()
total_val_loss_D_A_hr += val_loss_D_A_hr.item()
total_val_loss_D_B_hr += val_loss_D_B_hr.item()
total_val_loss_G_Identity_hr += loss_identity_A_hr + loss_identity_B_hr
total_val_loss_G_GAN_hr += loss_GAN_A2B_hr + loss_GAN_B2A_hr
total_val_loss_G_Cycle_hr += loss_cycle_ABA_hr + loss_cycle_BAB_hr
total_val_loss_G_lr += val_loss_G_lr.item()
total_val_loss_D_A_lr += val_loss_D_A_lr.item()
total_val_loss_D_B_lr += val_loss_D_B_lr.item()
total_val_loss_G_Identity_lr += loss_identity_A_lr + loss_identity_B_lr
total_val_loss_G_GAN_lr += loss_GAN_A2B_lr + loss_GAN_B2A_lr
total_val_loss_G_Cycle_lr += loss_cycle_ABA_lr + loss_cycle_BAB_lr
total_val_loss_feature += val_loss_feature.item()
total_val_loss_feature_intermediate += L_align_1.item()
total_val_loss_feature_final += L_align_2.item()
total_val_loss_em_consistency += val_loss_em_consistency
total_val_loss_COMB += val_loss_COMB.item()
# Progress report (TensorBoard)
x_axis_val = epoch * vl_len
writer.add_image('Maps/Val/LR (Real_A_lr, qt_A_hr_A)', real_A_lr[tb_img_idx], x_axis_val)
writer.add_image('Maps/Val/HR (Real_A_hr, qt_A_hr_A)', real_A_hr[tb_img_idx], x_axis_val)
with torch.no_grad():
qt_A_hat_hr_hat_A = netG_B2A_hr(sr_net_B(netG_A2B_lr(real_A_lr))) # <== OUR FINAL TASK !!!
writer.add_image('Maps/Val/SR (B2A(SR(A2B(LR_A))), qt_A_hat_hr_hat_A)', qt_A_hat_hr_hat_A[tb_img_idx],
x_axis_val)
if not args.ptr_sr:
writer.add_image('Maps/Val/LR (Real_B_lr)', real_B_lr[tb_img_idx], x_axis_val)
writer.add_image('Maps/Val/HR (Real_B_hr)', real_B_hr[tb_img_idx], x_axis_val)
writer.add_image('Maps/Val/SR (Real_B_hr_hat)', real_B_hr[tb_img_idx], x_axis_val)
writer.add_histogram('Hist/Val/HR (Real_A_hr, qt_A_hr_A)', real_A_hr[tb_img_idx], x_axis_val)
writer.add_histogram('Hist/Val/SR (B2A(SR(A2B(LR_A))), qt_A_hat_hr_hat_A)', qt_A_hat_hr_hat_A[tb_img_idx],
x_axis_val)
# Short validation, when a certain percentage of val batches is processed
if i == batches_before_break_valid:
break # exit from the inner for loop (VL BATCHES), pass to the next epoch
# Epoch Averaged Losses
avg_train_loss_DA_part, avg_train_loss_Ds_part, avg_train_loss_SR_part = total_train_loss_DA_part / tr_len, total_train_loss_Ds_part / tr_len, total_train_loss_SR_part / tr_len
avg_val_loss_DA_part, avg_val_loss_Ds_part, avg_val_loss_SR_part = total_val_loss_DA_part / vl_len, total_val_loss_Ds_part / vl_len, total_val_loss_SR_part / vl_len
avg_train_loss_G_hr, avg_train_loss_D_A_hr, avg_train_loss_D_B_hr = total_train_loss_G_hr / tr_len, total_train_loss_D_A_hr / tr_len, total_train_loss_D_B_hr / tr_len
avg_train_loss_G_lr, avg_train_loss_D_A_lr, avg_train_loss_D_B_lr = total_train_loss_G_lr / tr_len, total_train_loss_D_A_lr / tr_len, total_train_loss_D_B_lr / tr_len
avg_train_loss_G_Identity_hr, avg_train_loss_G_GAN_hr, avg_train_loss_G_Cycle_hr = total_train_loss_G_Identity_hr / tr_len, total_train_loss_G_GAN_hr / tr_len, total_train_loss_G_Cycle_hr / tr_len
avg_train_loss_G_Identity_lr, avg_train_loss_G_GAN_lr, avg_train_loss_G_Cycle_lr = total_train_loss_G_Identity_lr / tr_len, total_train_loss_G_GAN_lr / tr_len, total_train_loss_G_Cycle_lr / tr_len
avg_val_loss_G_hr, avg_val_loss_D_A_hr, avg_val_loss_D_B_hr = total_val_loss_G_hr / vl_len, total_val_loss_D_A_hr / vl_len, total_val_loss_D_B_hr / vl_len
avg_val_loss_G_lr, avg_val_loss_D_A_lr, avg_val_loss_D_B_lr = total_val_loss_G_lr / vl_len, total_val_loss_D_A_lr / vl_len, total_val_loss_D_B_lr / vl_len
avg_val_loss_G_Identity_hr, avg_val_loss_G_GAN_hr, avg_val_loss_G_Cycle_hr = total_val_loss_G_Identity_hr / vl_len, total_val_loss_G_GAN_hr / vl_len, total_val_loss_G_Cycle_hr / vl_len
avg_val_loss_G_Identity_lr, avg_val_loss_G_GAN_lr, avg_val_loss_G_Cycle_lr = total_val_loss_G_Identity_lr / vl_len, total_val_loss_G_GAN_lr / vl_len, total_val_loss_G_Cycle_lr / vl_len
avg_train_loss_feature, avg_val_loss_feature = total_train_loss_feature / tr_len, total_val_loss_feature / vl_len
avg_train_loss_feature_intermediate, avg_val_loss_feature_intermediate = total_train_loss_feature_intermediate / tr_len, total_val_loss_feature_intermediate / vl_len
avg_train_loss_feature_final, avg_val_loss_feature_final = total_train_loss_feature_final / tr_len, total_val_loss_feature_final / vl_len
avg_train_loss_em_consistency, avg_val_loss_em_consistency = total_train_loss_em_consistency / tr_len, total_val_loss_em_consistency / vl_len
avg_train_loss_COMB, avg_val_loss_COMB = total_train_loss_COMB / tr_len, total_val_loss_COMB / vl_len
# Epoch Report (TensorBoard + Log)
# Compute metrics on the LAST batch and for VAL ONLY, thus no mean
# BE CAREFUL: here, metrics are computed in the QT domain, not BVOC domain! A
# At test time, we will have to convert the SR maps to the BVOC domain
results_A = compute_metrics(qt_A_hat_hr_hat_A, real_A_hr, metrics=sr_metrics, mean=True) # A domain
if not args.ptr_sr: results_B = compute_metrics(real_B_hr_hat, real_B_hr, metrics=sr_metrics, mean=True) # B domain
current_lr_COMB = optimizer_COMB.param_groups[0]['lr']
current_lr_Ds = optimizer_Ds.param_groups[0]['lr']
# Learning Rates
writer.add_scalar('Learning Rate/COMB', current_lr_COMB, epoch)
writer.add_scalar('Learning Rate/Ds', current_lr_Ds, epoch)
# Training Losses
writer.add_scalar('Loss/Train/DA_part', avg_train_loss_DA_part, epoch)
writer.add_scalar('Loss/Train/Ds_part', avg_train_loss_Ds_part, epoch)
writer.add_scalar('Loss/Train/SR_part', avg_train_loss_SR_part, epoch)
writer.add_scalar('Loss/Train/G_hr', avg_train_loss_G_hr, epoch)
writer.add_scalar('Loss/Train/D_A_hr', avg_train_loss_D_A_hr, epoch)
writer.add_scalar('Loss/Train/D_B_hr', avg_train_loss_D_B_hr, epoch)
writer.add_scalar('Loss/Train/G_lr', avg_train_loss_G_lr, epoch)
writer.add_scalar('Loss/Train/D_A_lr', avg_train_loss_D_A_lr, epoch)
writer.add_scalar('Loss/Train/D_B_lr', avg_train_loss_D_B_lr, epoch)
writer.add_scalar('Loss/Train/G_Identity_hr', avg_train_loss_G_Identity_hr, epoch)
writer.add_scalar('Loss/Train/G_GAN_hr', avg_train_loss_G_GAN_hr, epoch)
writer.add_scalar('Loss/Train/G_Cycle_hr', avg_train_loss_G_Cycle_hr, epoch)
writer.add_scalar('Loss/Train/G_Identity_lr', avg_train_loss_G_Identity_lr, epoch)
writer.add_scalar('Loss/Train/G_GAN_lr', avg_train_loss_G_GAN_lr, epoch)
writer.add_scalar('Loss/Train/G_Cycle_lr', avg_train_loss_G_Cycle_lr, epoch)
writer.add_scalar('Loss/Train/Feature Alignment', avg_train_loss_feature, epoch)
writer.add_scalar('Loss/Train/Feature Alignment Intermediate', avg_train_loss_feature_intermediate, epoch)
writer.add_scalar('Loss/Train/Feature Alignment Final', avg_train_loss_feature_final, epoch)
writer.add_scalar('Loss/Train/Em Consistency', avg_train_loss_em_consistency, epoch)
writer.add_scalar('Loss/Train/COMB', avg_train_loss_COMB, epoch)
# Validation Losses
writer.add_scalar('Loss/Val/DA_part', avg_val_loss_DA_part, epoch)
writer.add_scalar('Loss/Val/Ds_part', avg_val_loss_Ds_part, epoch)
writer.add_scalar('Loss/Val/SR_part', avg_val_loss_SR_part, epoch)
writer.add_scalar('Loss/Val/G_hr', avg_val_loss_G_hr, epoch)
writer.add_scalar('Loss/Val/D_A_hr', avg_val_loss_D_A_hr, epoch)
writer.add_scalar('Loss/Val/D_B_hr', avg_val_loss_D_B_hr, epoch)
writer.add_scalar('Loss/Val/G_lr', avg_val_loss_G_lr, epoch)
writer.add_scalar('Loss/Val/D_A_lr', avg_val_loss_D_A_lr, epoch)
writer.add_scalar('Loss/Val/D_B_lr', avg_val_loss_D_B_lr, epoch)
writer.add_scalar('Loss/Val/G_Identity_hr', avg_val_loss_G_Identity_hr, epoch)
writer.add_scalar('Loss/Val/G_GAN_hr', avg_val_loss_G_GAN_hr, epoch)
writer.add_scalar('Loss/Val/G_Cycle_hr', avg_val_loss_G_Cycle_hr, epoch)
writer.add_scalar('Loss/Val/G_Identity_lr', avg_val_loss_G_Identity_lr, epoch)
writer.add_scalar('Loss/Val/G_GAN_lr', avg_val_loss_G_GAN_lr, epoch)
writer.add_scalar('Loss/Val/G_Cycle_lr', avg_val_loss_G_Cycle_lr, epoch)
writer.add_scalar('Loss/Val/Feature Alignment', avg_val_loss_feature, epoch)
writer.add_scalar('Loss/Val/Feature Alignment Intermediate', avg_val_loss_feature_intermediate, epoch)
writer.add_scalar('Loss/Val/Feature Alignment Final', avg_val_loss_feature_final, epoch)
writer.add_scalar('Loss/Val/Em Consistency', avg_val_loss_em_consistency, epoch)
writer.add_scalar('Loss/Val/COMB', avg_val_loss_COMB, epoch)
# Metrics
writer.add_scalar('Metrics/Val/SSIM A', results_A['SSIM'], epoch)
writer.add_scalar('Metrics/Val/PSNR A', results_A['PSNR'], epoch)
writer.add_scalar('Metrics/Val/NMSE A', results_A['NMSE'], epoch)
writer.add_scalar('Metrics/Val/UIQ A', results_A['UIQ'], epoch)
writer.add_scalar('Metrics/Val/SCC A', results_A['SCC'], epoch)
writer.add_scalar('Metrics/Val/MaxAE A', results_A['MaxAE'], epoch)
if not args.ptr_sr:
writer.add_scalar('Metrics/Val/SSIM B', results_B['SSIM'], epoch)
writer.add_scalar('Metrics/Val/PSNR B', results_B['PSNR'], epoch)
writer.add_scalar('Metrics/Val/NMSE B', results_B['NMSE'], epoch)
writer.add_scalar('Metrics/Val/UIQ B', results_B['UIQ'], epoch)
writer.add_scalar('Metrics/Val/SCC B', results_B['SCC'], epoch)
writer.add_scalar('Metrics/Val/MaxAE B', results_B['MaxAE'], epoch)
print(f'{datetime.now()} | Epoch {epoch}/{args.n_epochs} |')
print(
f'TR Loss | DA: {avg_train_loss_DA_part:.6f} | F_align: {avg_train_loss_feature:.6f} | EmC: {avg_train_loss_em_consistency:.6f} | COMB: {avg_train_loss_COMB:.6f}'
f'\nVL Loss | DA: {avg_val_loss_DA_part:.6f} | F_align: {avg_val_loss_feature:.6f} | EmC: {avg_val_loss_em_consistency:.6f} | COMB: {avg_val_loss_COMB:.6f}')
print(f'VL SR Metrics: SSIM {results_A["SSIM"]:.4f} | NMSE {results_A["NMSE"]:.4f}')
print(f'LRs: COMB {current_lr_COMB:.8f} | Ds {current_lr_Ds:.8f}\n')
# ———————————————— Epoch Ends ————————————————
# Save the best models
if avg_val_loss_COMB < COMB_best_val_loss: # Improvement
COMB_best_val_loss = avg_val_loss_COMB
best_epoch = epoch
# save BEST models checkpoints
torch.save(netG_A2B_hr.state_dict(), os.path.join(output_dir_path, 'netG_A2B_hr_best.pth'))
torch.save(netG_B2A_hr.state_dict(), os.path.join(output_dir_path, 'netG_B2A_hr_best.pth'))
torch.save(netD_A_hr.state_dict(), os.path.join(output_dir_path, 'netD_A_hr_best.pth'))
torch.save(netD_B_hr.state_dict(), os.path.join(output_dir_path, 'netD_B_hr_best.pth'))
torch.save(netG_A2B_lr.state_dict(), os.path.join(output_dir_path, 'netG_A2B_lr_best.pth'))
torch.save(netG_B2A_lr.state_dict(), os.path.join(output_dir_path, 'netG_B2A_lr_best.pth'))
torch.save(netD_A_lr.state_dict(), os.path.join(output_dir_path, 'netD_A_lr_best.pth'))
torch.save(netD_B_lr.state_dict(), os.path.join(output_dir_path, 'netD_B_lr_best.pth'))
if not args.ptr_sr: torch.save(sr_net_B.state_dict(), os.path.join(output_dir_path, 'sr_net_B_best.pth'))
best_SSIM_A = results_A['SSIM']
best_NMSE_A = results_A['NMSE']
print(f'Best models saved at epoch {epoch} with loss {COMB_best_val_loss:.8f} !')
print(f'A Domain Metrics ==> SSIM {best_SSIM_A:.4f} | NMSE {best_NMSE_A:.4f}')
else: # Early stopping, after initial warmup
if (epoch - best_epoch) > args.es_patience and epoch > args.warmup:
COMB_last_loss = COMB_best_val_loss
# Save LAST models checkpoints
torch.save(netG_A2B_hr.state_dict(), os.path.join(output_dir_path, 'netG_A2B_hr_last.pth'))
torch.save(netG_B2A_hr.state_dict(), os.path.join(output_dir_path, 'netG_B2A_hr_last.pth'))
torch.save(netD_A_hr.state_dict(), os.path.join(output_dir_path, 'netD_A_hr_last.pth'))
torch.save(netD_B_hr.state_dict(), os.path.join(output_dir_path, 'netD_B_hr_last.pth'))
torch.save(netG_A2B_lr.state_dict(), os.path.join(output_dir_path, 'netG_A2B_lr_last.pth'))
torch.save(netG_B2A_lr.state_dict(), os.path.join(output_dir_path, 'netG_B2A_lr_last.pth'))
torch.save(netD_A_lr.state_dict(), os.path.join(output_dir_path, 'netD_A_lr_last.pth'))
torch.save(netD_B_lr.state_dict(), os.path.join(output_dir_path, 'netD_B_lr_last.pth'))
if not args.ptr_sr: torch.save(sr_net_B.state_dict(), os.path.join(output_dir_path, 'sr_net_B_last.pth'))
print(f'DA Early stopping at epoch {epoch} with loss {COMB_last_loss:.8f}!'
f'\nBest models saved at epoch {best_epoch} with loss: {COMB_best_val_loss:.8f} !')
print(f'A Domain Metrics ==> SSIM {best_SSIM_A:.4f} | NMSE {best_NMSE_A:.4f}')
break # to exit from the main for loop (EPOCHS)
else:
print(f'No improvement. Early stopping in: {epoch - best_epoch}/{args.es_patience}')
# Update learning rates
if args.scheduler_type == 'global':
lr_scheduler_COMB.step()
lr_scheduler_Ds.step()
elif args.scheduler_type == 'on-validation':
lr_scheduler_COMB.step(avg_val_loss_COMB)
lr_scheduler_Ds.step(avg_val_loss_Ds_part)
###################################
writer.close()
end_time = datetime.now()
print(f'{end_time}\tTrain ends !\nElapsed time: {end_time - start_time}')
print(f'Best loss {COMB_best_val_loss:.8f} at epoch {best_epoch}')
print(f'==> {output_folder_name} <==')