-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_lib.py
271 lines (208 loc) · 10.5 KB
/
train_lib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import tensorflow as tf
import collections
import time
import datetime
import matplotlib.pyplot as plt
import random
import numpy as np
import os
import io
from audio_feature_reconstruction.gan import data_provider
from audio_feature_reconstruction.gan import networks
HParams = collections.namedtuple('HParams', [
'embedding_generator',
'tfrecord_path_train',
'tfrecord_path_val',
'audio_tracks_path',
'saved_model_path',
'examples_per_record',
'batch_size',
'buffer_size',
'layer_name',
'train_log_dir',
'generator_lr',
'discriminator_lr',
'adv_loss_weight',
'l1_loss_weight',
'epochs',
'ps_replicas',
])
# This method returns a helper function to compute cross entropy loss
cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)
def discriminator_loss(real_output, fake_output):
real_loss = cross_entropy(tf.ones_like(real_output), real_output)
fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output)
total_loss = real_loss + fake_loss
return total_loss
def combined_generator_loss(fake_output, fake_images, real_images, l1_loss_weight, gan_loss_weight):
gan_loss = cross_entropy(tf.ones_like(fake_output), fake_output)
l1_loss = tf.reduce_mean(tf.abs(fake_images - real_images))
total_gen_loss = gan_loss_weight * gan_loss + l1_loss_weight * l1_loss
return total_gen_loss, gan_loss, l1_loss
def read_track_id(tf_example):
track_id = tf_example.features.feature['track_id'].bytes_list.value[0].decode("utf-8")
return track_id
def read_spectrogram(tf_example):
chunked_spectrogram = tf_example.features.feature['chunked_spectrogram'].float_list.value
n_chunks = tf_example.features.feature['chunked_spectrogram_shape'].int64_list.value[0]
n_frames = tf_example.features.feature['chunked_spectrogram_shape'].int64_list.value[1]
n_bands = tf_example.features.feature['chunked_spectrogram_shape'].int64_list.value[2]
chunked_spectrogram = np.reshape(chunked_spectrogram,(n_chunks,n_frames,n_bands))
return chunked_spectrogram, n_chunks, n_frames, n_bands
def read_embedding(tf_example):
# Read embeddings
embeddings = tf_example.features.feature['module_apply_default/embedding'].float_list.value
n_embeddings = tf_example.features.feature['module_apply_default/embedding_shape'].int64_list.value[0]
embedding_dim = tf_example.features.feature['module_apply_default/embedding_shape'].int64_list.value
embeddings = np.reshape(embeddings, embedding_dim)
return embeddings, n_embeddings, embedding_dim
def read_tfrecord(tfrecord_paths, tfrecord_idx):
chunked_spectrogram_dict = {}
embeddings_dict = {}
for example in tf.compat.v1.python_io.tf_record_iterator(tfrecord_paths[tfrecord_idx]):
tf_example = tf.train.Example.FromString(example)
track_id = read_track_id(tf_example)
chunked_spectrogram, n_chunks, n_frames, n_bands = read_spectrogram(tf_example)
chunked_spectrogram = np.reshape(chunked_spectrogram, (n_chunks * n_frames, n_bands)).transpose()
embeddings, n_embeddings, embedding_dim = read_embedding(tf_example)
# Save value in dictionary
chunked_spectrogram_dict[track_id] = chunked_spectrogram
embeddings_dict[track_id] = embeddings
return embeddings_dict, chunked_spectrogram_dict
def plot_to_image(figure):
"""Converts the matplotlib plot specified by 'figure' to a PNG image and
returns it. The supplied figure is closed and inaccessible after this call."""
# Save the plot to a PNG in memory.
buf = io.BytesIO()
plt.savefig(buf, format='png')
# Closing the figure prevents it from being displayed directly inside
# the notebook.
plt.close(figure)
buf.seek(0)
# Convert PNG buffer to TF image
image = tf.image.decode_png(buf.getvalue(), channels=4)
# Add the batch dimension
image = tf.expand_dims(image, 0)
return image
def generate_and_save_images(hparams, model, epoch, summary_writer, discriminator, dataset_val):
# Notice `training` is set to False.
# This is so all layers run in inference mode (batchnorm).
tfrecord_paths = tf.io.gfile.glob(hparams.tfrecord_path_val + '*.tfrecord')
tfrecord_idx = 32
embeddings_dict, chunked_spectrogram_dict = read_tfrecord(tfrecord_paths, tfrecord_idx)
# Extract audio track names contained in tfrecord
tfrecord_track_names = list(chunked_spectrogram_dict.keys())
# Randomly select one track
track_idx = random.randrange(len(tfrecord_track_names))
# Extract embeddings
embeddings_temp = embeddings_dict[tfrecord_track_names[track_idx]]
# Number of chunks in embeddings (may vary) N.B. is the same for the spectrogram
n_chunks = embeddings_temp.shape[0]
# Read corresponding spectrograms
chunked_spectrogram = chunked_spectrogram_dict[tfrecord_track_names[track_idx]]
estimated_spectrogram = model(embeddings_temp, training=False)
n_frames = 96
n_bands = 64
estimated_spectrogram = np.reshape(estimated_spectrogram, (n_frames * n_chunks, n_bands)).transpose()
figure = plt.figure(figsize=(15, 6))
plt.subplot(2, 1, 1, title='Ground Truth')
plt.ylabel('Bands')
plt.imshow(chunked_spectrogram, aspect='auto')
plt.subplot(2, 1, 2, title='Estimated Epoch' + str(epoch))
plt.imshow(estimated_spectrogram, aspect='auto')
plt.xlabel('Frames')
plt.ylabel('Bands')
with summary_writer.as_default():
# Val image
tf.summary.image("Training data", plot_to_image(figure), step=epoch)
gen_loss_val = []
gan_loss_val = []
l1_loss_val = []
disc_loss_val = []
# Compute losses
for embedding, images in dataset_val:
generated_images=model(embedding, training=False)
real_output = discriminator(images, training=False)
fake_output = discriminator(generated_images, training=False)
disc_loss_val_temp = discriminator_loss(real_output, fake_output)
gen_loss_val_temp, gan_loss_val_temp, l1_loss_val_temp = combined_generator_loss(
fake_output, generated_images, images, hparams.l1_loss_weight, hparams.adv_loss_weight)
gen_loss_val.append(gen_loss_val_temp)
gan_loss_val.append(gan_loss_val_temp)
l1_loss_val.append(l1_loss_val_temp)
disc_loss_val.append(disc_loss_val_temp)
with summary_writer.as_default():
# Val loss
tf.summary.scalar('gen_total_loss_validation', np.mean(gen_loss_val), step=epoch)
tf.summary.scalar('gen_gan_loss_validation', np.mean(gan_loss_val), step=epoch)
tf.summary.scalar('gen_l1_loss_validation', np.mean(l1_loss_val), step=epoch)
tf.summary.scalar('disc_loss_validation', np.mean(disc_loss_val), step=epoch)
def train(hparams):
# Number of epochs
epochs = hparams.epochs
# Load training data
datapath = tf.io.gfile.glob(hparams.tfrecord_path_train+'*.tfrecord')
dataset = data_provider.create_dataset(
datapath[:32], hparams.buffer_size, hparams.batch_size,hparams)
dataset_val = data_provider.create_dataset(
datapath[32], hparams.buffer_size, hparams.batch_size, hparams)
# Load generator model
generator = networks.make_generator_model(hparams)
# Load discriminator model
discriminator = networks.make_discriminator_model()
generator.summary()
discriminator.summary()
generator_optimizer = tf.keras.optimizers.Adam(hparams.generator_lr)
discriminator_optimizer = tf.keras.optimizers.Adam(hparams.discriminator_lr)
# String used to identify current model training
train_instance = '_'+hparams.embedding_generator+'_'+hparams.layer_name+'_l1_'+str(hparams.l1_loss_weight)+'_adv_'+str(hparams.adv_loss_weight)
summary_writer = tf.summary.create_file_writer(
hparams.train_log_dir + "fit/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S") + train_instance+'_'+str(hparams.epochs)+'_epochs')
# Notice the use of `tf.function`
# This annotation causes the function to be "compiled".
@tf.function
def train_step(noise, images, epoch):
with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
generated_images = generator(noise, training=True)
real_output = discriminator(images, training=True)
fake_output = discriminator(generated_images, training=True)
gen_loss, gan_loss, l1_loss = combined_generator_loss(fake_output,
generated_images, images,
hparams.l1_loss_weight,
hparams.adv_loss_weight)
disc_loss = discriminator_loss(real_output, fake_output)
gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables)
gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables)
generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables))
discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables))
with summary_writer.as_default():
tf.summary.scalar('gen_total_loss', gen_loss, step=epoch)
tf.summary.scalar('gen_gan_loss', gan_loss, step=epoch)
tf.summary.scalar('gen_l1_loss', l1_loss, step=epoch)
tf.summary.scalar('disc_loss', disc_loss, step=epoch)
return gen_loss, gan_loss, l1_loss, disc_loss
# TRAINING
for epoch in range(hparams.epochs):
start = time.time()
for chunked_spectrogram, embedding in dataset:
gen_loss, gan_loss, l1_loss, disc_loss = train_step(chunked_spectrogram, embedding, epoch)
# Produce images for the GIF as we go
if epoch % 10 == 0:
generate_and_save_images(hparams, generator,
epoch + 1,
summary_writer, discriminator, dataset_val)
print('Time for epoch {} is {} sec'.format(epoch + 1, time.time() - start))
print('epoch ' + str(epoch))
print('gen_loss: ' + str(gen_loss))
print('gan_loss:' + str(gan_loss))
print('l1_loss:' + str(l1_loss))
print('disc_loss: ' + str(disc_loss))
# Generate after the final epoch
if hparams.adv_loss_weight == 0:
loss_type = 'l1'
elif hparams.l1_loss_weight == 0:
loss_type = 'adv'
else:
loss_type = 'l1_adv'
saved_model_path = os.path.join(hparams.saved_model_path,hparams.embedding_generator + '_' +hparams.layer_name, loss_type)
generator.save(saved_model_path)