-
Notifications
You must be signed in to change notification settings - Fork 77
/
Copy pathglobal_heap.h
569 lines (448 loc) · 17.4 KB
/
global_heap.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
// -*- mode: c++; c-basic-offset: 2; indent-tabs-mode: nil -*-
// Copyright 2019 The Mesh Authors. All rights reserved.
// Use of this source code is governed by the Apache License,
// Version 2.0, that can be found in the LICENSE file.
#pragma once
#ifndef MESH_GLOBAL_HEAP_H
#define MESH_GLOBAL_HEAP_H
#include <algorithm>
#include <array>
#include <mutex>
#include "internal.h"
#include "meshable_arena.h"
#include "mini_heap.h"
#include "heaplayers.h"
using namespace HL;
namespace mesh {
static constexpr std::pair<MiniHeapListEntry, size_t> Head{MiniHeapListEntry{list::Head, list::Head}, 0};
class EpochLock {
private:
DISALLOW_COPY_AND_ASSIGN(EpochLock);
public:
EpochLock() {
}
inline size_t ATTRIBUTE_ALWAYS_INLINE current() const noexcept {
return _epoch.load(std::memory_order::memory_order_seq_cst);
}
inline size_t ATTRIBUTE_ALWAYS_INLINE isSame(size_t startEpoch) const noexcept {
return current() == startEpoch;
}
inline void ATTRIBUTE_ALWAYS_INLINE lock() noexcept {
// make sure that the previous epoch was even
const auto old = _epoch.fetch_add(1, std::memory_order::memory_order_seq_cst);
hard_assert(old % 2 == 0);
}
inline void ATTRIBUTE_ALWAYS_INLINE unlock() noexcept {
#ifndef NDEBUG
// make sure that the previous epoch was odd
const auto old = _epoch.fetch_add(1, std::memory_order::memory_order_seq_cst);
d_assert(old % 2 == 1);
#else
_epoch.fetch_add(1, std::memory_order::memory_order_seq_cst);
#endif
}
private:
atomic_size_t _epoch{0};
};
class GlobalHeapStats {
public:
atomic_size_t meshCount;
size_t mhFreeCount;
size_t mhAllocCount;
size_t mhHighWaterMark;
};
class GlobalHeap : public MeshableArena {
private:
DISALLOW_COPY_AND_ASSIGN(GlobalHeap);
typedef MeshableArena Super;
static_assert(HL::gcd<MmapHeap::Alignment, Alignment>::value == Alignment,
"expected MmapHeap to have 16-byte alignment");
public:
enum { Alignment = 16 };
GlobalHeap() : Super(), _maxObjectSize(SizeMap::ByteSizeForClass(kNumBins - 1)), _lastMesh{time::now()} {
}
inline void dumpStrings() const {
lock_guard<mutex> lock(_miniheapLock);
mesh::debug("TODO: reimplement printOccupancy\n");
// for (size_t i = 0; i < kNumBins; i++) {
// _littleheaps[i].printOccupancy();
// }
}
inline void flushAllBins() {
for (size_t sizeClass = 0; sizeClass < kNumBins; sizeClass++) {
flushBinLocked(sizeClass);
}
}
void scavenge(bool force = false) {
lock_guard<mutex> lock(_miniheapLock);
Super::scavenge(force);
}
void dumpStats(int level, bool beDetailed) const;
// must be called with exclusive _mhRWLock held
inline MiniHeap *ATTRIBUTE_ALWAYS_INLINE allocMiniheapLocked(int sizeClass, size_t pageCount, size_t objectCount,
size_t objectSize, size_t pageAlignment = 1) {
d_assert(0 < pageCount);
void *buf = _mhAllocator.alloc();
d_assert(buf != nullptr);
// allocate out of the arena
Span span{0, 0};
char *spanBegin = Super::pageAlloc(span, pageCount, pageAlignment);
d_assert(spanBegin != nullptr);
d_assert((reinterpret_cast<uintptr_t>(spanBegin) / kPageSize) % pageAlignment == 0);
MiniHeap *mh = new (buf) MiniHeap(arenaBegin(), span, objectCount, objectSize);
const auto miniheapID = MiniHeapID{_mhAllocator.offsetFor(buf)};
Super::trackMiniHeap(span, miniheapID);
// mesh::debug("%p (%u) created!\n", mh, GetMiniHeapID(mh));
_miniheapCount++;
_stats.mhAllocCount++;
_stats.mhHighWaterMark = max(_miniheapCount, _stats.mhHighWaterMark);
return mh;
}
inline void *pageAlignedAlloc(size_t pageAlignment, size_t pageCount) {
// if given a very large allocation size (e.g. (uint64_t)-8), it is possible
// the pageCount calculation overflowed. An allocation that big is impossible
// to satisfy anyway, so just fail early.
if (unlikely(pageCount == 0)) {
return nullptr;
}
lock_guard<mutex> lock(_miniheapLock);
MiniHeap *mh = allocMiniheapLocked(-1, pageCount, 1, pageCount * kPageSize, pageAlignment);
d_assert(mh->isLargeAlloc());
d_assert(mh->spanSize() == pageCount * kPageSize);
// d_assert(mh->objectSize() == pageCount * kPageSize);
void *ptr = mh->mallocAt(arenaBegin(), 0);
return ptr;
}
inline MiniHeapListEntry *freelistFor(uint8_t freelistId, int sizeClass) {
switch (freelistId) {
case list::Empty:
return &_emptyFreelist[sizeClass].first;
case list::Partial:
return &_partialFreelist[sizeClass].first;
case list::Full:
return &_fullList[sizeClass].first;
}
// remaining case is 'attached', for which there is no freelist
return nullptr;
}
inline bool postFreeLocked(MiniHeap *mh, int sizeClass, size_t inUse) {
// its possible we raced between reading isAttached + grabbing a lock.
// just check here to avoid having to play whack-a-mole at each call site.
if (mh->isAttached()) {
return false;
}
const auto currFreelistId = mh->freelistId();
auto currFreelist = freelistFor(currFreelistId, sizeClass);
const auto max = mh->maxCount();
std::pair<MiniHeapListEntry, size_t> *list;
uint8_t newListId;
if (inUse == 0) {
// if the miniheap is already in the right list there is nothing to do
if (currFreelistId == list::Empty) {
return false;
}
newListId = list::Empty;
list = &_emptyFreelist[sizeClass];
} else if (inUse == max) {
if (currFreelistId == list::Full) {
return false;
}
newListId = list::Full;
list = &_fullList[sizeClass];
} else {
if (currFreelistId == list::Partial) {
return false;
}
newListId = list::Partial;
list = &_partialFreelist[sizeClass];
}
list->first.add(currFreelist, newListId, list::Head, mh);
list->second++;
return _emptyFreelist[sizeClass].second > kBinnedTrackerMaxEmpty;
}
inline void releaseMiniheapLocked(MiniHeap *mh, int sizeClass) {
// ensure this flag is always set with the miniheap lock held
mh->unsetAttached();
const auto inUse = mh->inUseCount();
postFreeLocked(mh, sizeClass, inUse);
}
template <uint32_t Size>
inline void releaseMiniheaps(FixedArray<MiniHeap, Size> &miniheaps) {
if (miniheaps.size() == 0) {
return;
}
lock_guard<mutex> lock(_miniheapLock);
for (auto mh : miniheaps) {
releaseMiniheapLocked(mh, mh->sizeClass());
}
miniheaps.clear();
}
template <uint32_t Size>
size_t fillFromList(FixedArray<MiniHeap, Size> &miniheaps, pid_t current,
std::pair<MiniHeapListEntry, size_t> &freelist, size_t bytesFree) {
if (freelist.first.empty()) {
return bytesFree;
}
auto nextId = freelist.first.next();
while (nextId != list::Head && bytesFree < kMiniheapRefillGoalSize && !miniheaps.full()) {
auto mh = GetMiniHeap(nextId);
d_assert(mh != nullptr);
nextId = mh->getFreelist()->next();
// TODO: we can eventually remove this
d_assert(!(mh->isFull() || mh->isAttached() || mh->isMeshed()));
// TODO: this is commented out to match a bug in the previous implementation;
// it turns out if you don't track bytes free and give more memory to the
// thread-local cache, things perform better!
// bytesFree += mh->bytesFree();
d_assert(!mh->isAttached());
mh->setAttached(current, freelistFor(mh->freelistId(), mh->sizeClass()));
d_assert(mh->isAttached() && mh->current() == current);
hard_assert(!miniheaps.full());
miniheaps.append(mh);
d_assert(freelist.second > 0);
freelist.second--;
}
return bytesFree;
}
template <uint32_t Size>
size_t selectForReuse(int sizeClass, FixedArray<MiniHeap, Size> &miniheaps, pid_t current) {
size_t bytesFree = fillFromList(miniheaps, current, _partialFreelist[sizeClass], 0);
if (bytesFree >= kMiniheapRefillGoalSize || miniheaps.full()) {
return bytesFree;
}
// we've exhausted all of our partially full MiniHeaps, but there
// might still be empty ones we could reuse.
return fillFromList(miniheaps, current, _emptyFreelist[sizeClass], bytesFree);
}
template <uint32_t Size>
inline void allocSmallMiniheaps(int sizeClass, uint32_t objectSize, FixedArray<MiniHeap, Size> &miniheaps,
pid_t current) {
lock_guard<mutex> lock(_miniheapLock);
d_assert(sizeClass >= 0);
for (MiniHeap *oldMH : miniheaps) {
releaseMiniheapLocked(oldMH, sizeClass);
}
miniheaps.clear();
d_assert(objectSize <= _maxObjectSize);
#ifndef NDEBUG
const size_t classMaxSize = SizeMap::ByteSizeForClass(sizeClass);
d_assert_msg(objectSize == classMaxSize, "sz(%zu) shouldn't be greater than %zu (class %d)", objectSize,
classMaxSize, sizeClass);
#endif
d_assert(sizeClass >= 0);
d_assert(sizeClass < kNumBins);
d_assert(miniheaps.size() == 0);
// check our bins for a miniheap to reuse
auto bytesFree = selectForReuse(sizeClass, miniheaps, current);
if (bytesFree >= kMiniheapRefillGoalSize || miniheaps.full()) {
return;
}
// if we have objects bigger than the size of a page, allocate
// multiple pages to amortize the cost of creating a
// miniheap/globally locking the heap. For example, asking for
// 2048 byte objects would allocate 4 4KB pages.
const size_t objectCount = max(kPageSize / objectSize, kMinStringLen);
const size_t pageCount = PageCount(objectSize * objectCount);
while (bytesFree < kMiniheapRefillGoalSize && !miniheaps.full()) {
auto mh = allocMiniheapLocked(sizeClass, pageCount, objectCount, objectSize);
d_assert(!mh->isAttached());
mh->setAttached(current, freelistFor(mh->freelistId(), sizeClass));
d_assert(mh->isAttached() && mh->current() == current);
miniheaps.append(mh);
bytesFree += mh->bytesFree();
}
return;
}
// large, page-multiple allocations
void *ATTRIBUTE_NEVER_INLINE malloc(size_t sz);
inline MiniHeap *ATTRIBUTE_ALWAYS_INLINE miniheapForWithEpoch(const void *ptr, size_t ¤tEpoch) const {
currentEpoch = _meshEpoch.current();
return miniheapFor(ptr);
}
inline MiniHeap *ATTRIBUTE_ALWAYS_INLINE miniheapFor(const void *ptr) const {
auto mh = reinterpret_cast<MiniHeap *>(Super::lookupMiniheap(ptr));
return mh;
}
inline MiniHeap *ATTRIBUTE_ALWAYS_INLINE miniheapForID(const MiniHeapID id) const {
auto mh = reinterpret_cast<MiniHeap *>(_mhAllocator.ptrFromOffset(id.value()));
__builtin_prefetch(mh, 1, 2);
return mh;
}
inline MiniHeapID miniheapIDFor(const MiniHeap *mh) const {
return MiniHeapID{_mhAllocator.offsetFor(mh)};
}
void untrackMiniheapLocked(MiniHeap *mh) {
// mesh::debug("%p (%u) untracked!\n", mh, GetMiniHeapID(mh));
_stats.mhAllocCount -= 1;
mh->getFreelist()->remove(freelistFor(mh->freelistId(), mh->sizeClass()));
}
void freeFor(MiniHeap *mh, void *ptr, size_t startEpoch);
// called with lock held
void freeMiniheapAfterMeshLocked(MiniHeap *mh, bool untrack = true) {
// don't untrack a meshed miniheap -- it has already been untracked
if (untrack && !mh->isMeshed()) {
untrackMiniheapLocked(mh);
}
d_assert(!mh->getFreelist()->prev().hasValue());
d_assert(!mh->getFreelist()->next().hasValue());
mh->MiniHeap::~MiniHeap();
// memset(reinterpret_cast<char *>(mh), 0x77, sizeof(MiniHeap));
_mhAllocator.free(mh);
_miniheapCount--;
}
void freeMiniheap(MiniHeap *&mh, bool untrack = true) {
lock_guard<mutex> lock(_miniheapLock);
freeMiniheapLocked(mh, untrack);
}
void freeMiniheapLocked(MiniHeap *&mh, bool untrack) {
const auto spanSize = mh->spanSize();
MiniHeap *toFree[kMaxMeshes];
size_t last = 0;
memset(toFree, 0, sizeof(*toFree) * kMaxMeshes);
// avoid use after frees while freeing
mh->forEachMeshed([&](MiniHeap *mh) {
toFree[last++] = mh;
return false;
});
for (size_t i = 0; i < last; i++) {
MiniHeap *mh = toFree[i];
const bool isMeshed = mh->isMeshed();
const auto type = isMeshed ? internal::PageType::Meshed : internal::PageType::Dirty;
Super::free(reinterpret_cast<void *>(mh->getSpanStart(arenaBegin())), spanSize, type);
_stats.mhFreeCount++;
freeMiniheapAfterMeshLocked(mh, untrack);
}
mh = nullptr;
}
// flushBinLocked empties _emptyFreelist[sizeClass]
inline void flushBinLocked(size_t sizeClass) {
// mesh::debug("flush bin %zu\n", sizeClass);
d_assert(!_emptyFreelist[sizeClass].first.empty());
if (_emptyFreelist[sizeClass].first.next() == list::Head) {
return;
}
std::pair<MiniHeapListEntry, size_t> &empty = _emptyFreelist[sizeClass];
MiniHeapID nextId = empty.first.next();
while (nextId != list::Head) {
auto mh = GetMiniHeap(nextId);
nextId = mh->getFreelist()->next();
freeMiniheapLocked(mh, true);
empty.second--;
}
d_assert(empty.first.next() == list::Head);
d_assert(empty.first.prev() == list::Head);
}
void ATTRIBUTE_NEVER_INLINE free(void *ptr);
inline size_t getSize(void *ptr) const {
if (unlikely(ptr == nullptr))
return 0;
lock_guard<mutex> lock(_miniheapLock);
auto mh = miniheapFor(ptr);
if (likely(mh)) {
return mh->objectSize();
} else {
return 0;
}
}
int mallctl(const char *name, void *oldp, size_t *oldlenp, void *newp, size_t newlen);
size_t getAllocatedMiniheapCount() const {
lock_guard<mutex> lock(_miniheapLock);
return _miniheapCount;
}
void setMeshPeriodMs(std::chrono::milliseconds period) {
_meshPeriodMs = period;
}
void lock() {
_miniheapLock.lock();
// internal::Heap().lock();
}
void unlock() {
// internal::Heap().unlock();
_miniheapLock.unlock();
}
// PUBLIC ONLY FOR TESTING
// after call to meshLocked() completes src is a nullptr
void ATTRIBUTE_NEVER_INLINE meshLocked(MiniHeap *dst, MiniHeap *&src);
inline void ATTRIBUTE_ALWAYS_INLINE maybeMesh() {
if (!kMeshingEnabled) {
return;
}
if (_meshPeriod == 0) {
return;
}
if (_meshPeriodMs == kZeroMs) {
return;
}
const auto now = time::now();
auto duration = chrono::duration_cast<chrono::milliseconds>(now - _lastMesh);
if (likely(duration < _meshPeriodMs)) {
return;
}
lock_guard<mutex> lock(_miniheapLock);
{
// ensure if two threads tried to grab the mesh lock at the same
// time, the second one bows out gracefully without meshing
// twice in a row.
const auto lockedNow = time::now();
auto duration = chrono::duration_cast<chrono::milliseconds>(lockedNow - _lastMesh);
if (unlikely(duration < _meshPeriodMs)) {
return;
}
}
_lastMesh = now;
meshAllSizeClassesLocked();
}
inline bool okToProceed(void *ptr) const {
lock_guard<mutex> lock(_miniheapLock);
if (ptr == nullptr) {
return false;
}
return miniheapFor(ptr) != nullptr;
}
inline internal::vector<MiniHeap *> meshingCandidatesLocked(int sizeClass) const {
// FIXME: duplicated with code in halfSplit
internal::vector<MiniHeap *> bucket{};
auto nextId = _partialFreelist[sizeClass].first.next();
while (nextId != list::Head) {
auto mh = GetMiniHeap(nextId);
if (mh->isMeshingCandidate() && (mh->fullness() < kOccupancyCutoff)) {
bucket.push_back(mh);
}
nextId = mh->getFreelist()->next();
}
return bucket;
}
private:
// check for meshes in all size classes -- must be called LOCKED
void meshAllSizeClassesLocked();
// meshSizeClassLocked returns the number of merged sets found
size_t meshSizeClassLocked(size_t sizeClass, MergeSetArray &mergeSets, SplitArray &left, SplitArray &right);
const size_t _maxObjectSize;
atomic_size_t _meshPeriod{kDefaultMeshPeriod};
std::chrono::milliseconds _meshPeriodMs{kMeshPeriodMs};
atomic_size_t ATTRIBUTE_ALIGNED(CACHELINE_SIZE) _lastMeshEffective{0};
// we want this on its own cacheline
EpochLock ATTRIBUTE_ALIGNED(CACHELINE_SIZE) _meshEpoch{};
// always accessed with the mhRWLock exclusively locked. cachline
// aligned to avoid sharing cacheline with _meshEpoch
size_t ATTRIBUTE_ALIGNED(CACHELINE_SIZE) _miniheapCount{0};
// these must only be accessed or modified with the _miniheapLock held
std::array<std::pair<MiniHeapListEntry, size_t>, kNumBins> _emptyFreelist{
Head, Head, Head, Head, Head, Head, Head, Head, Head, Head, Head, Head, Head,
Head, Head, Head, Head, Head, Head, Head, Head, Head, Head, Head, Head};
std::array<std::pair<MiniHeapListEntry, size_t>, kNumBins> _partialFreelist{
Head, Head, Head, Head, Head, Head, Head, Head, Head, Head, Head, Head, Head,
Head, Head, Head, Head, Head, Head, Head, Head, Head, Head, Head, Head};
std::array<std::pair<MiniHeapListEntry, size_t>, kNumBins> _fullList{
Head, Head, Head, Head, Head, Head, Head, Head, Head, Head, Head, Head, Head,
Head, Head, Head, Head, Head, Head, Head, Head, Head, Head, Head, Head};
mutable mutex _miniheapLock{};
GlobalHeapStats _stats{};
// XXX: should be atomic, but has exception spec?
time::time_point _lastMesh;
};
static_assert(kNumBins == 25, "if this changes, add more 'Head's above");
static_assert(sizeof(std::array<MiniHeapListEntry, kNumBins>) == kNumBins * 8, "list size is right");
static_assert(sizeof(GlobalHeap) < (kNumBins * 8 * 3 + 64 * 7 + 100000), "gh small enough");
} // namespace mesh
#endif // MESH_GLOBAL_HEAP_H