-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsim_mod.py
175 lines (126 loc) · 5.53 KB
/
sim_mod.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import os
import numpy as np
from PIL import Image
from matplotlib import pyplot as plt
from scipy import special
from mod_schemes import ModScheme
import komm
if __name__ == '__main__':
"""
Main function
"""
# arguments
import argparse
# Create argument parser object
parser = argparse.ArgumentParser()
parser.add_argument('--scheme', '-s', action='store')
# Create a namespace
args = parser.parse_args()
script_dir = os.path.abspath(os.path.dirname(__file__))
image_path = os.path.join(script_dir, 'data/DC4_150x100.pgm')
# input image
tx_im = Image.open(image_path)
# number of pixels
Npixels = tx_im.size[1] * tx_im.size[0]
# # plot input image
# plt.figure(1)
# plt.imshow(np.array(tx_im),cmap="gray",vmin=0,vmax=255)
# flatten the image into a 1D array
tx_bin = np.unpackbits(np.array(tx_im))
mod = ModScheme()
# modulation scheme object and corresponding bits per symbol
obj,k = mod.create_object(args.scheme)
# maximim SNR[dB] value
max_snr = 10
n = 0
num_bits = 8*Npixels
# array to store simulated bit error ratio
ber = np.empty(max_snr)
# array to store theoretical bit error ratio
ber_th = np.empty(max_snr)
# array to store signal-to-noise[dB] ratio for the channel
snr = np.empty(max_snr)
# array to store automatic-repeat-request ratio
arq_ratio = np.empty(max_snr)
string = ' '.join(["Performing", args.scheme, "for signal-to-noise ratio in range 0 to", str(max_snr-1), "dB..."])
print(string)
# loop to to simulate the transmission with SNR[dB] up to the maximum value
while n<max_snr:
# additive white gaussian noise source with SNR=n[dB]
awgn = komm.AWGNChannel(snr=10**(n/10.))
# reset the counter which adds the total number of ARQs
arq = 0
# array to store received binary sequence
rx_bin = np.empty(num_bits, dtype=int)
# list to store received complex-valued data
rx_data = []
# loop to simulate the transmission of an 8-bit word at a time
for j in range(0, num_bits, 8):
# replace the LSB of each 8-bit word with even parity bit
temp = tx_bin[j:j+8]
temp[-1] = np.sum(temp[:-1])%2
tx_bin[j:j+8] = temp
# simulate modulation
tx_data = obj.modulate(tx_bin[j:j+8])
# set the retransmission flag
resend = True
# loop to simulate automatic-repeat-request
while resend:
# simulate noise in channel (returns complex-valued data)
rx_data_byte = awgn(tx_data)
# simulate demodulation
rx_demod_byte = obj.demodulate(rx_data_byte)
# parity test at the receiver
if np.sum(rx_demod_byte)%2 != 0:
# if incorrect then increment counter and retransmit
arq += 1
else:
# else reset the retransmission flag
resend = False
# append the received complex-valued data
rx_data.append(list(rx_data_byte))
# store the received byte
rx_bin[j:j+8] = rx_demod_byte
# total number of errors
num_error = np.sum(rx_bin != tx_bin)
# simulated BER for corresponding SNR[dB]
ber[n] = num_error / num_bits
nonzero_index = np.nonzero(ber) # indices up to non-zero BER
# theoretical BER for corresponding SNR[dB]
ber_th[n] = 0.5 * special.erfc(np.sqrt((10**(n/10.))/k))
# ASQR ratio for corresponding SNR[dB]
arq_ratio[n] = arq / Npixels
snr[n] = n
n += 1
# plot simulated BER against SNR for individual modulation schemes
# plot theoretical BER against SNR for individual modulation schemes
plt.figure(figsize=(8,20))
plt.suptitle(args.scheme)
plt.subplot(211)
plt.scatter(snr[nonzero_index], ber[nonzero_index])
plt.plot(snr[nonzero_index], ber[nonzero_index], label = 'Simulated Dependence')
plt.plot(snr[nonzero_index], ber_th[nonzero_index], label = 'Theoretical Dependence')
plt.xlabel('SNR [dB]')
plt.ylabel('BER')
plt.yscale('log')
plt.legend(loc = 'upper right')
plt.grid(True)
# plot ARQ ratio against SNR for individual modulation schemes
plt.subplot(212)
plt.scatter(snr, arq_ratio) #plot points
plt.plot(snr, arq_ratio) #plot lines
plt.xlabel('SNR [dB]')
plt.ylabel('ARQ Ratio')
plt.yscale('log')
plt.grid(True)
# # plot received image for individual modulation schemes
# rx_im = np.packbits(rx_bin).reshape(tx_im.size[1], tx_im.size[0])
# plt.figure()
# plt.imshow(np.array(rx_im), cmap="gray", vmin=0, vmax=255)
# plt.title(i[0] + ' Received Image')
# plot I-Q constellation for individual modulation schemes
plt.figure()
plt.axes().set_aspect("equal")
plt.scatter(np.asarray(rx_data)[:10000].real, np.asarray(rx_data)[:10000].imag, s=1, marker=".")
plt.title(args.scheme + ' I-Q Constellation Diagram')
plt.show()